We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




First Specific PET Scan for TB to Improve Treatment

By MedImaging International staff writers
Posted on 28 Jun 2024
Print article
Image: Researchers have developed a more accurate way to scan for TB using PET (Photo courtesy of Adobe Stock)
Image: Researchers have developed a more accurate way to scan for TB using PET (Photo courtesy of Adobe Stock)

In 2021, tuberculosis (TB) afflicted 10.6 million people globally, and 1.6 million succumbed to this disease, ranking it as the world’s second deadliest infectious disease after COVID-19. Predominantly, over 80% of TB cases and fatalities occur in low- and middle-income countries, where healthcare infrastructures are less developed. Currently, TB is diagnosed either by testing the patient’s sputum for TB bacteria or using positron emission tomography (PET) scans with the common radiotracer FDG to detect lung inflammation. However, sputum tests may return negative before TB is fully cleared from the lungs, potentially leading to prematurely discontinued treatments. While PET scans help visualize the extent of the disease, they are not TB-specific since inflammation may also arise from other conditions and may continue even after the TB bacteria have been eradicated, possibly extending treatment unnecessarily. Now, researchers have developed a more accurate way to scan for TB using PET.

A collaborative team that included researchers from the Rosalind Franklin Institute (Oxfordshire, UK) has developed a new radiotracer that targets live TB bacteria within the body. Radiotracers are radioactive substances that emit detectable radiation, which PET scanners can convert into detailed 3D images. This new tracer, named FDT, allows for the precise detection of active TB in the lungs, marking the first use of PET scans for this purpose. The FDT tracer has undergone rigorous pre-clinical testing, showing no adverse effects, and is now poised to enter Phase I clinical trials.

This method's significant advantage is its compatibility with standard radiation safety measures and PET scanners, which are increasingly available worldwide. The tracer is synthesized from FDG through a simple enzymatic process developed by the researchers, making it practical for production without specialized skills or facilities. This innovation holds particular promise for improving TB diagnosis in low- and middle-income countries.

“Finding an accurate way to identify when TB is still active in the body is not only important for initial diagnosis, but to ensure patients are receiving antibiotics long enough to kill the disease, and no longer,” said Professor Ben Davis, Science Director of the Franklin’s Next Generation Chemistry group, who led the research. “The common radiotracer FDG and the enzymes we’ve developed to turn it into FDT can all be sent by post. With a minimum of additional training, this effective diagnostic in essence could be rolled out into most healthcare systems around the world – and most importantly, in the places where this disease is still taking its greatest toll.”

Related Links:
Rosalind Franklin Institute

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Portable Color Doppler Ultrasound Scanner
DCU10
New
Digital X-Ray Detector Plate
Acuity DRe
LED-Based X-Ray Viewer
Dixion X-View

Print article
Radcal

Channels

MRI

view channel
Image: MRI-linac allows clinicians to see what’s going on in the brain for the first time (Photo courtesy of Sylvester Comprehensive Cancer Center)

MRI Provides Early Warning System for Glioblastoma Growth

A new study has demonstrated the potential of combining imaging with radiation to shape glioblastoma treatment in real time. The research is the first to quantify tumor changes in glioblastoma patients... Read more

Ultrasound

view channel
Image: Disease captured by the hand-held 3D photoacoustic scanner (Photo courtesy of Dr. Nam Huynh)

Medical Imaging Breakthrough to Revolutionize Cancer and Arthritis Diagnosis

Photoacoustic tomography (PAT) imaging uses laser-generated ultrasound waves to detect subtle changes in small veins and arteries, typically less than a millimeter in size and up to 15mm deep in human tissues.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Focused ultrasound therapy is poised to become an essential tool in every hospital, cancer care center and physician office (Photo courtesy of Arrayus)

Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer

Pancreatic cancer remains one of the most difficult cancers to treat due to its dense tissue structure, which limits the effectiveness of traditional drug therapies. Bracco Imaging S.A. (Milan, Italy)... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.