We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

Advanced Assistive Technology Predicts Organ Deformation during Radiotherapy

By MedImaging International staff writers
Posted on 06 Oct 2023
Print article
Image: A new technology can accurately predict organ deformation during radiation therapy (Photo courtesy of 123RF)
Image: A new technology can accurately predict organ deformation during radiation therapy (Photo courtesy of 123RF)

Radiation therapy is a popular choice for treating cancer and other conditions, largely because it's minimally invasive, allowing patients to quickly resume their normal lives. One issue, though, is that radiation can affect nearby healthy organs, particularly when high radiation doses are administered to diseased tissues in motion. While regular movements like breathing are somewhat predictable, irregular movements caused by the organ's interactions with neighboring organs can be hard to predict. The ability to precisely anticipate how organs move during radiation treatment is crucial for improving the therapy's effectiveness. Now, a new technology can capture real-time cross-sectional images of the affected area and use them to create three-dimensional (3D) motion of organs. This enables accurate predictions of the deformation of the pancreas and other organs depending on their position related to the nearby organs during radiation therapy.

Researchers from the University of Tsukuba (Ibaraki, Japan) have developed an innovative technique to determine the 3D movement of organs based on their relative positions to neighboring organs. This is done by acquiring real-time cross-sectional (2D) images of the targeted area from three different orientations during radiation therapy. Additionally, the researchers have created a cross-section selection system for picking the most accurate 2D image for further analysis.

The research team validated their technique using publicly accessible MRI data from 20 cases to evaluate the pancreas's position. When using data from just one angle, the error in locating the pancreas was 5.11 mm. However, when data from all three angles was employed, this error shrank dramatically to just 2.13 mm. In some cases, the accuracy was even comparable to what would be achieved if 3D information had been gathered beforehand. These findings could pave the way for radiation therapy protocols designed to minimize radiation exposure to nearby healthy organs, resulting in safer radiation therapy.

Related Links:
University of Tsukuba

Gold Supplier
Ultrasound System
Gold Supplier
Conductive Gel
X-Ray Generator
RF Series
Silver Supplier
IMRT Thorax Phantom
CIRS Model 002LFC

Print article



view channel
Image: Intelligent NR provides high-quality diagnostic images containing significantly less grainy noise (Photo courtesy of Canon)

AI-Driven DR System Produces Higher Quality Images While Limiting Radiation Doses in Pediatric Patients

Ionizing radiation is a fundamental element in producing diagnostic X-rays, yet it's widely acknowledged for its cancer risk potential. Digital projection radiography, a vital imaging modality, accounts... Read more


view channel
Image: The researchers are using MRI-guided radiation therapy that pairs daily MRIs with radiation treatment (Photo courtesy of Sylvester)

AI Technique Automatically Traces Tumors in Large MRI Datasets to Guide Real-time Glioblastoma Treatment

Treating glioblastoma, a prevalent and aggressive brain cancer, involves the use of radiation therapy guided by CT imaging. While this method is effective in targeting radiation, it doesn't provide real-time... Read more


view channel
Image: The new ultrasound patch can measure how full the bladder is (Photo courtesy of MIT)

Ultrasound Patch Designed to Monitor Bladder and Kidney Health Could Enable Earlier Cancer Diagnosis

Bladder dysfunction and related health issues affect millions worldwide. Monitoring bladder volume is crucial for assessing kidney health. Traditionally, this requires a visit to a medical facility and... Read more

General/Advanced Imaging

view channel
Image: Artificial intelligence predicts therapy responses for ovarian cancer (Photo courtesy of 123RF)

AI Model Combines Blood Test and CT Scan Analysis to Predict Therapy Responses in Ovarian Cancer Patients

Ovarian cancer annually impacts thousands of women, with many diagnoses occurring at advanced stages due to subtle early symptoms. High-grade serous ovarian carcinoma, which accounts for 70-80% of ovarian... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Attendees can discover innovative products and technology in the RSNA 2023 Technical Exhibits (Photo courtesy of RSNA)

RSNA 2023 Technical Exhibits to Offer Innovations in AI, 3D Printing and More

The 109th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA, Oak Brook, IL, USA) to be held in Chicago, Nov. 26 to 30 is all set to offer a vast array of medical... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.