We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Imaging Method Superior for Diagnosing Multiple Types of Cancer

By MedImaging International staff writers
Posted on 30 May 2023
Print article
Image: New imaging method offers potential for diagnosing, staging, and treating multiple types of cancer (Photo courtesy of SNMMI)
Image: New imaging method offers potential for diagnosing, staging, and treating multiple types of cancer (Photo courtesy of SNMMI)

Cancer-associated fibroblasts play a significant role in tumor development, migration, and progression. A subset of these fibroblasts expresses fibroblast activation protein (FAP), a protein prominently found in solid tumors but hardly present in healthy tissues. This makes FAP an appealing target for diagnosis and treatment using fibroblast activation protein inhibitors (FAPI). Now, two new studies have highlighted the potential of a novel FAPI radiotracer in the diagnosis, staging, and treatment of various types of cancer. The most comprehensive patient study of 68Ga-FAPI PET to date has demonstrated its superiority over the standard 18F-FDG PET in evaluating numerous cancers. Additionally, a newly developed FAPI-targeted treatment has demonstrated its ability to curb tumor growth in common cancers in preclinical trials. These advancements hold great promise for providing more accurate staging and management of cancer patients.

In the first study conducted by researchers at Essen University Hospital (Essen, Germany), 324 patients with 21 different types of tumors underwent 68Ga-FAPI PET over a span of three years; 237 of them also received 18F-FDG PET imaging. Researchers compared the uptake of 68Ga-FAPI PET and 18F-FDG PET across various tumors. They also looked for a potential correlation between 68Ga-FAPI uptake on PET scans and FAP expression in stained tissue samples. The uptake was significantly higher for 68Ga-FAPI compared to 18F-FDG in primary pancreatic cancer lesions and sarcoma, as well as in metastatic pancreatic cancer lesions. 68Ga-FAPI PET proved superior in detecting local, regional, and distant metastatic disease in various cancers, including sarcoma, pancreatic, head and neck, bile duct, lung, and bladder cancers. A positive correlation was also discovered between radiotracer uptake and FAP expression levels in tissue samples.

“68Ga-FAPI PET can be used as a tool for diagnosis of tumors, with the potential for more precise staging and management of patients with the aforementioned tumor entities,” said Nader Hirmas, MD, ScD, a PhD candidate at the Department of Nuclear Medicine at Essen University Hospital. “It could also be used as a tool to screen patients who would potentially benefit from FAP-directed radioligand therapy.”

In the second study, researchers at Purdue University (West Lafayette, IN, USA) developed a new FAP-targeted radiopharmaceutical therapy that targets naturally occurring cancer-associated fibroblasts. Using modern bioanalytical methods, they identified which cells in 34 human tumors of the breast, ovary, colon, and lung expressed FAP. They developed and tested two radiopharmaceutical conjugates, FAP6-DOTA and FAP6-IP-DOTA (the latter contains an albumin-binder for longer circulation and improved tumor uptake), on human cells expressing FAP. Additionally, radiopharmaceutical therapies of 177Lu-FAP6-DOTA and 177Lu-FAP6-IP-DOTA were evaluated in a mouse model. FAP was found to be over-expressed in 5% of human tumor cells, with cancer-associated fibroblasts making up 77% of this FAP-subpopulation and cancer cells constituting 2%. FAP6-IP-DOTA demonstrated high FAP affinity, extended circulation, increased tumor uptake, and minimal retention in healthy tissue. Additionally, single doses of 177Lu-FAP6-IP-DOTA curbed tumor growth by almost 50% in all tested tumor models without causing reproducible toxicities.

“These data suggest that this newly designed FAP-targeted radiotherapy should be capable of treating many more types of human cancers in which the FAP expression is limited to only the cancer-associated fibroblasts,” noted Spencer D. Lindeman, PhD, visiting scholar in the Department of Chemistry at Purdue University. “This could be a powerful and versatile tool for the field of clinical nuclear medicine.”

Related Links:
Essen University Hospital 
Purdue University

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
1.5T Superconducting MRI System
uMR 680
Compact C-Arm
Arcovis DRF-C S21
Ultrasound System
P20 Elite

Print article
Radcal

Channels

Radiography

view channel
Image: 3D cinematic renderings of the control and diseased heart in anatomic orientation (Photo courtesy of ESRF)

Innovative X-Ray Technique Captures Human Heart with Unprecedented Detail

Cardiovascular disease remains the leading cause of death globally. In 2019, ischemic heart disease, which weakens the heart due to reduced blood supply, accounted for approximately 8.9 million or 16%... Read more

MRI

view channel
Image: SubtleSYNTH creates synthetic STIR images with zero acquisition time that are interchangeable with conventionally acquired STIR images (Photo courtesy of Subtle Medical)

AI-Powered Synthetic Imaging Software to Further Redefine Speed and Quality of Accelerated MRI

The development of innovative solutions is not only redefining the landscape of artificial intelligence (AI)-based diagnostic imaging but also simplifying the ever-increasing complexity of workflows faced... Read more

Ultrasound

view channel
Image: The new FDA-cleared AI-enabled applications have been integrated into the EPIQ CVx and Affiniti CVx ultrasound systems (Photo courtesy of Royal Philips)

Next-Gen AI-Enabled Cardiovascular Ultrasound Platform Speeds Up Analysis

Heart failure is a significant global health challenge, affecting approximately 64 million individuals worldwide. It is associated with high mortality rates and poor quality of life, placing a considerable... Read more

General/Advanced Imaging

view channel
Image: HeartFlow Plaque Analysis leverages cutting-edge AI for assessment of plaque quantity and composition (Photo courtesy of HeartFlow, Inc.)

Next Gen Interactive Plaque Analysis Platform Assesses Patient Risk in Suspected Coronary Artery Disease

A first-of-its-kind plaque analysis tool to be fully integrated with FFRCT (when FFRCT is performed) provides impactful insights that enhance clinical decision-making and enable personalized patient treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The new collaborations aim to further advance AI foundation models for medical imaging (Photo courtesy of Microsoft)

Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging

Medical imaging is a critical component of healthcare, with health systems spending roughly USD 65 billion annually on imaging alone, and about 80% of all hospital and health system visits involve at least... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.