We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

PET Imaging Agent Predicts Poor Functional Outcomes After Heart Attack

By MedImaging International staff writers
Posted on 16 Jun 2022
Print article
Image: New biomarker predicts severity of cardiac remodeling after heart attack (Photo courtesy of Pexels)
Image: New biomarker predicts severity of cardiac remodeling after heart attack (Photo courtesy of Pexels)

Acute myocardial infarction, commonly known as heart attack, is one of the leading causes of death worldwide. After a heart attack, the heart goes through a series of changes at the molecular and cellular level. The fibroblast activation protein (FAP) is overexpressed as these changes occur and can provide useful information about a patient’s prognosis. Now, poor functional outcomes after a heart attack can be predicted with a new PET imaging agent, 68Ga-FAPI-46, according to new research.

A study by researchers at the Hannover School of Medicine (Hannover, Germany) revealed that when correlated with cardiac MRI, 68Ga-FAPI-46 PET is a new specific indicator of active fibrosis and can identify a patient’s chances of recovery. In the study, 35 patients underwent 68Ga-FAPI-46 PET/CT, perfusion SPECT, and cardiac MRI within 11 days after a heart attack. Cardiac FAP-volume was determined by PET imaging and infarct size defined by SPECT imaging. Cardiac MRI showed functional parameters, area of injury and tissue mapping. These datapoints were then compiled to examine potential correlations.

In all patients the FAP-upregulation was significantly larger than both the infarct size and the area of injury as defined by SPECT and cardiac MRI, respectively. A higher extent of myocardial FAP upregulation was predictive of subsequent left ventricular dysfunction. As such, the researchers concluded that fibroblast activation in non-infarcted areas of the heart may contribute to adverse outcomes.

“Molecular PET imaging of the fibroblast activation protein has recently been evaluated in patients after acute myocardial infarction,” said Johanna Diekmann, MD, clinician scientist in the Department of Nuclear Medicine at the Hannover School of Medicine. “In our study, we sought to obtain further insights by correlating FAP-targeted PET imaging with tissue characteristics from cardiac MRI, as well as functional outcome.”

“Myocardial infarction is an important contributor to the development of heart failure, but the early molecular processes involved in the transition from initial injury to heart failure are under-treated,” added Diekmann. “New antifibrotic therapies (such as CAR-T cell therapies) could significantly change future therapy of heart failure. Using FAPI-PET to select patients suitable for therapy would open a new major application for PET in fibrosis and cardiac diseases.”

“FAPI is a very exciting radiotracer that holds great potential for the future of nuclear medicine and molecular imaging,” noted Heather Jacene, Scientific Program chair of the Society of Nuclear Medicine and Molecular Imaging. “68Ga-FAPI-46 PET/CT clearly indicates pro-fibrotic activity after acute myocardial infarction. The predictive value of FAPI-PET for the magnitude of subsequent decline in global cardiac function, if further validated, may be used in the future to help select the most suitable patients for anti-fibrotic therapies which are currently under development. This could ultimately have a powerful impact on cardiovascular medicine.”

Related Links:
Hannover School of Medicine


Print article
Radcal
CIRS -  MIRION

Channels

Radiography

view channel
Image: Spinal fractures in the elderly are preventable with simple X-rays (Photo courtesy of Pexels)

Simple X-Ray Method Can Diagnose Vertebral Compression and Prevent Spinal Fractures

Vertebral compression means that the spine is compressed, causing a fracture in one of the vertebrae. Vertebral compression fractures (VCFs) occur easily in people with osteoporosis and are very common... Read more

Imaging IT

view channel
Illustration

Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology

The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read more

Industry News

view channel
Image: RSNA`s annual meeting is the world`s largest medical imaging conference (Photo courtesy of RSNA)

RSNA 2022 Sees Rise in Abstract Submissions Ahead of Annual Meeting

The Radiological Society of North America (RSNA, Oak Brook, IL, USA) has announced that nearly 10,400 scientific and educational abstracts have been submitted for the Society's 108th Scientific Assembly... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.