We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Reconstructed MRI Images Guide Radiotherapy Treatment

By MedImaging International staff writers
Posted on 07 Jul 2021
Print article
Image: The MRgRT treatment room at the ICR (Photo courtesy of ICR)
Image: The MRgRT treatment room at the ICR (Photo courtesy of ICR)
An artificial intelligence (AI) algorithm that reconstructs magnetic resonance imaging (MRI) images of moving tumors in seconds could optimize radiotherapy (RT) treatment, according to a new study.

Developed at The Institute of Cancer Research (ICR; London, United Kingdom), The Royal Marsden NHS Foundation Trust (London, United Kingdom), the German Cancer Research Center (DKFZ; Heidelberg, Germany), and other institutions, magnetic resonance guided radiotherapy (MRgRT) is based on a deep radial convolutional neural network (Dracula) algorithm that replicates four-dimensional (4D) MRI images, including tumors and healthy organs, from low quality images containing artifacts.

By using data on the spatial dimensions and respiratory phases of a patient's tumor and surrounding organs, Dracula can produce 4D MRI and mid-position images from scans previously considered unacceptable for MRgRT. Clinically, the MRI images reconstructed by Dracula can be used to guide a linear accelerator (Linac), thus serving as a novel platform to locate and deliver precisely targeted RT doses to tumors, minimizing the risk of affecting healthy organs. The study was published in the June 2021 issue of Radiotherapy and Oncology.

“Using an AI to rapidly reconstruct 4D MRI images of a cancer patient's anatomy lets us accurately determine the location of tumors and characterize their motion right before RT treatment,” said senior author Andreas Wetscherek, PhD, of the ICR. “It would be especially useful for cancers where we need to avoid the healthy organs around the tumor, such as pancreatic cancer, which currently limits the delivery of high doses of radiation to the tumor.”

To treat patients with tumors that move as they breathe, 4D MRI images are needed to show the 3D volume of the tumor and surrounding organs at different time points during breathing, known as a respiratory phase. By combining respiratory phases, the midposition (the average position of the tumor) is calculated, helping to accurately plan MRgRT. An alternative is to have a patient hold their breath, but this can be strenuous for the patient and makes treatment longer and more difficult.

Related Links:
The Institute of Cancer Research
The Royal Marsden NHS Foundation Trust
German Cancer Research Center


New
Gold Supplier
Conductive Gel
Tensive
New
X-Ray Wall Stand
PROVERT
New
Mobile X-Ray Unit
Exairo Plus
New
Dosimetry Software
BEAMSCAN Software 4.5

Print article
Sun Nuclear -    Mirion
FIME - Informa

Channels

Radiography

view channel
Image: BiOI ruby-like crystals can improve medical imaging safety by lowering intensities of harmful X-rays (Photo courtesy of University of Cambridge)

Sustainable Solar Cell Material Could Revolutionize Medical Imaging

The use of X-rays for internal body imaging has dramatically changed non-invasive medical diagnostics. Yet, the high dose of X-rays required for these imaging techniques, due to the poor performance of... Read more

MRI

view channel
Image: An international, multi-institutional project aims to develop a radically new MRI scanner that is compact and transportable (Photo courtesy of U of M Medical School)

Compact and Portable MRI Scanner to Expand Existing Imaging Capabilities and Accessibility

Magnetic Resonance Imaging (MRI) technology which provides detailed images of the human brain is instrumental in understanding brain functions and diagnosing medical conditions. MRI has become indispensable... Read more

Ultrasound

view channel
Image: A new study has shown the value of endoscopic ultrasound in NSCLC (Photo courtesy of Freepik)

Endoscopic Ultrasound Can Provide Value in NSCLC, Finds Study

The usefulness of confirmatory mediastinoscopy following tumor-negative results on endoscopic ultrasound still remains debatable among researchers. This procedure is often employed for mediastinal staging... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The global AI-enabled medical imaging solutions market is expected to reach USD 18.36 billion in 2032 (Photo courtesy of Freepik)

Global AI-Enabled Medical Imaging Solutions Market Driven by Need for Early Disease Detection

The AI-enabled medical imaging solutions market is currently in its developmental stages, following the significant role of AI-based tools in combating the COVID-19 pandemic. The pandemic saw an upswing... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.