We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Optical Hydrogel Monitors Cancer Patients Radiation Dose

By MedImaging International staff writers
Posted on 26 Feb 2020
Print article
Image: A circle of the hydrogel, irradiated on the left half, whereas the right half is not irradiated (Photo courtesy of ASU)
Image: A circle of the hydrogel, irradiated on the left half, whereas the right half is not irradiated (Photo courtesy of ASU)
A novel hydrogel applied directly to a patient's skin changes color in direct correlation to radiation therapy (RT) dose levels, claims a new study.

Developed by researchers at Arizona State University (ASU; Tempe, USA) and Banner-M.D. Anderson Cancer Center (Gilbert, AZ, USA), the gel-based nanosensor is impregnated with gold salts and amino acids. Exposure to ionizing radiation results in the conversion of gold ions in the gel to gold nanoparticles, which render a visual change in color in the gel due to their plasmonic properties. Without radiation, the hydrogel is colorless; but as it is exposed to radiation, it turns pink, with the color intensity directly correlated to the amount of radiation.

The gel nanosensor can detect complex topographical dose patterns, with the intensity of color formed in the gel serving as a quantitative reporter of the ionizing radiation. At the end of RT therapy, the gel is painlessly peeled off the skin and the color hue is measured with the aid of an absorption spectrometer. The gel has so far been tested on an anthropomorphic phantom and in live dogs undergoing clinical grade RT. The study was presented at the 64th annual meeting of the Biophysical Society, held during February 2020 in San Diego (CA, USA).

“The ease of fabrication, operation, rapid readout, colorimetric detection, and relatively low cost illustrate the translational potential of this technology for topographical dose mapping in radiotherapy applications in the clinic,” said lead author and study presenter Subhadeep Dutta, MSc, of ASU. “Our next plan is to convert it to an app-based system, where you can take a picture of a gel and that can predict the dose based on programming in the app. It's just measuring color, which is easy to do.”

Examples of current dose monitors include radiochromic films, which resemble a sheet of paper; but as they are sensitive to light and heat, they must be carefully handled, and require long processing times. Other methods include quantum dots and metal organic frameworks, which demonstrate an intense scintillating response, but provide only point dose information; and polymer gel dosimeters that rely on sophisticated readout techniques (such as MRI) for post-irradiation analysis.

Related Links:
Arizona State University
Banner-M.D. Anderson Cancer Center


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Full Field Digital Mammography Phantom
Mammo FFDM Phantom
Drape Barrier
Double Pivot Swing Arm Drape
Ultrasound System
Aplio me

Print article
Radcal

Channels

Radiography

view channel
Image: 3D cinematic renderings of the control and diseased heart in anatomic orientation (Photo courtesy of ESRF)

Innovative X-Ray Technique Captures Human Heart with Unprecedented Detail

Cardiovascular disease remains the leading cause of death globally. In 2019, ischemic heart disease, which weakens the heart due to reduced blood supply, accounted for approximately 8.9 million or 16%... Read more

MRI

view channel
Image: SubtleSYNTH creates synthetic STIR images with zero acquisition time that are interchangeable with conventionally acquired STIR images (Photo courtesy of Subtle Medical)

AI-Powered Synthetic Imaging Software to Further Redefine Speed and Quality of Accelerated MRI

The development of innovative solutions is not only redefining the landscape of artificial intelligence (AI)-based diagnostic imaging but also simplifying the ever-increasing complexity of workflows faced... Read more

Ultrasound

view channel
Image: The new FDA-cleared AI-enabled applications have been integrated into the EPIQ CVx and Affiniti CVx ultrasound systems (Photo courtesy of Royal Philips)

Next-Gen AI-Enabled Cardiovascular Ultrasound Platform Speeds Up Analysis

Heart failure is a significant global health challenge, affecting approximately 64 million individuals worldwide. It is associated with high mortality rates and poor quality of life, placing a considerable... Read more

General/Advanced Imaging

view channel
Image: HeartFlow Plaque Analysis leverages cutting-edge AI for assessment of plaque quantity and composition (Photo courtesy of HeartFlow, Inc.)

Next Gen Interactive Plaque Analysis Platform Assesses Patient Risk in Suspected Coronary Artery Disease

A first-of-its-kind plaque analysis tool to be fully integrated with FFRCT (when FFRCT is performed) provides impactful insights that enhance clinical decision-making and enable personalized patient treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The new collaborations aim to further advance AI foundation models for medical imaging (Photo courtesy of Microsoft)

Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging

Medical imaging is a critical component of healthcare, with health systems spending roughly USD 65 billion annually on imaging alone, and about 80% of all hospital and health system visits involve at least... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.