We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

External Beam RT Targets Tumors More Precisely

By MedImaging International staff writers
Posted on 20 Aug 2019
Print article
Image: Focusing an electron beam can spare tissues surrounding a tumor, according to a new study (Photo courtesy of the University of Strathclyde).
Image: Focusing an electron beam can spare tissues surrounding a tumor, according to a new study (Photo courtesy of the University of Strathclyde).
A new study shows that very high-energy electron (VHEE) beams could potentially enable clinicians to accurately target malignancies and reduce damage to surrounding tissues.

Researchers at the University of Strathclyde (United Kingdom), the National Physical Laboratory (NPL; Teddington, United Kingdom), and other institutions conducted a water phantom study (based on Monte Carlo simulations) of a magnetic “lens” that can focus particle beams within the body. Concentrating such a VHEE beam into a small, well-defined volumetric element, which can be shaped or scanned to treat deep-seated tumors, allows the dose to surrounding tissue to be distributed over a larger volume.

The result is reduced peak surface and exit doses by more than one order of magnitude, compared with a collimated beam. The magnetic lens, which is in effect an ultra-compact laser-wakefield accelerator, is only millimeters long, and can be easily focused. The researchers are now planning to expand the study and are setting up a medical beamline with high energy electron accelerators at the Scottish Centre for the Application of Plasma-based Accelerator (SCAPA; Strathclyde, United Kingdom). The study was published on July 25, 2019, in Nature Scientific Reports.

“Electrons, much like protons, have properties specific to particles. The significantly smaller electron mass, however, must be compensated for by increasing their energy, and therefore inertia, to achieve an effect similar to high mass particles,” said lead author Strathclyde PhD student Karolina Kokurewicz, MSc. “We push the envelope, showing that a VHEE beam, when focused, can be easily controlled to target precisely tumors similar to beam scanning modalities. The net effect is a greatly enhanced dose profile that conforms closely to the target volumes and potentially provides better tumor control.”

“One of the challenges in radiotherapy is to deposit a high radiation dose in a way that the dose fully ‘conforms’ to the tumor, to ensure that all cancerous cells are killed, while preventing damage to healthy cells,” said senior author Professor Dino Jaroszynski, PhD, of the University of Strathclyde department of physics. “In a similar way to a magnifying glass focusing the sun's rays to a small spot, we propose to focus a particle beam to a small spot using a magnetic lens to ablate the tumor.”

Common forms of radiation currently used in RT include bremsstrahlung X-rays produced by linear accelerators. These relatively low energy electron beams can be used directly to irradiate tumors, but they do not penetrate deeply into the body. To irradiate the tumor with sufficient radiation to kill all tumor cells, the X-ray beam is often rotated, while the patient remains stationary, thus superimposing multiple beams with different energies to produce a spread-out-Bragg peak region. This, however, results in an increased entrance dose, which could be avoided by focusing VHEE beams.

Related Links:
University of Strathclyde
National Physical Laboratory

Gold Supplier
Ultrasound Transducer/Probe Cleaner
Transeptic Cleaning Solution
Air Displacement Plethysmography System
High Frequency X-Ray Generator
Medical Software
Bladder Scanner Graphics Workstation Software

Print article



view channel
Image: MRI scan showing the fetus and placental compartments (Photo courtesy of WUSTL)

New MRI Method Automatically Detects Placental Health during Pregnancy

Early monitoring of the placenta can improve detection and prevention of pregnancy complications, such as preterm birth, fetal growth disorders and preeclampsia. Currently, standard MRI analysis methods... Read more


view channel
Image: The new Clarius MSK AI model speeds up diagnosis and treatment of musculoskeletal injuries (Photo courtesy of Clarius)

Handheld MSK Ultrasound Scanner Uses AI to Automatically Identify and Measure Tendons in Foot, Ankle and Knee

An artificial intelligence (AI) application for musculoskeletal (MSK) imaging that works with handheld point-of-care ultrasound devices automatically identifies, highlights, and measures tendon structures... Read more

General/Advanced Imaging

view channel
Image: CZT gamma detector for SPECT imaging (Photo courtesy of Kromek)

Low-Dose Molecular Breast Imaging (MBI) Could Improve Cancer Detection in Dense Breast Tissue

Traditional mammography is often less able to clearly image tumors due to the density of the breast tissue. Molecular breast imaging (MBI) technology uses a radioactive tracer that ‘lights up’ areas of... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.