We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Radiosensitizer Molecule Enhances RT in Hypoxic Tumor Cores

By MedImaging International staff writers
Posted on 21 May 2019
Print article
Image: The novel nanoparticle enhances RT killing of cancer cells in the low-oxygen tumor core (Photo courtesy of Wenpei Fan, LOMIN Laboratory, NIBIB).
Image: The novel nanoparticle enhances RT killing of cancer cells in the low-oxygen tumor core (Photo courtesy of Wenpei Fan, LOMIN Laboratory, NIBIB).
A novel nanoparticle that generates radiation-induced reactive oxygen species (ROS) can dramatically increase the success of radiation therapy (RT), claims a new study.

Developed, among others, at the National Institute of Biomedical Imaging and Bioengineering (NIBIB; Bethesda, MD, USA), Zhejiang University (Hangzhou, China), the Chinese Academy of Sciences (Shenyang, China), the radiosensitizer molecule is made of hollow mesoporous organosilica nanoparticles (HMONs) that contain pores with a diameter of 2-50 nanometers. The HMONs are loaded with two different compounds; one creates ROS in an oxygen-rich environment when hit with radiation. The other creates ROS when hit with radiation in the hypoxic core of the tumor.

The loaded nanoparticles were tested in a human glioblastoma cell line, revealing that the combination of nanoparticles and radiation shredded the DNA of the glioblastoma cells, compared with nanoparticles alone or radiation alone. Tests showed that the nanoparticles generated extremely reactive oxygen free radicals by peroxy bond cleavage when exposed to radiation in both normoxic and hypoxic conditions, confirming that the system worked as designed. The study was published in the March 2019 edition of Nature Communications.

“When hit with radiation the particle produces destructive oxygen free radicals in normal and low oxygen parts of the tumor. Carbon monoxide gas, which is toxic to tumors, is further created when the oxygen free radicals interact with the compound FeCO,” said lead author Wenpei Fan, PhD, of the NIBIB Laboratory of Molecular Imaging and Nanomedicine (LOMIN). “We believe this therapy approach offers new possibilities for enhanced X-ray-activated treatment for future deep-cancer therapy. The next logical step is to optimize the structure and scale up nanoparticle synthesis to allow clinical translation of this type of radiotherapy enhancement.”

ROS are chemically reactive chemical species containing oxygen, such asperoxides, superoxide, hydroxyl radical, and singlet oxygen. In a biological context, ROS are formed as a natural byproduct of the normal metabolism of oxygen and have important roles in cell signaling and homeostasis. However, during times of environmental stress, such as ultraviolet (UV) or heat exposure, ROS levels can increase dramatically, resulting in oxidative stress and significant damage to cell structures.

Related Links:
National Institute of Biomedical Imaging and Bioengineering
Zhejiang University
Chinese Academy of Sciences

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Ultrasound Needle Guide
Ultra-Pro II
New
C-Arm with FPD
Digiscan V20 / V30
New
Silver Member
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers

Print article
Radcal

Channels

Radiography

view channel
Image: LumiGuide enables doctors to navigate through blood vessels using light instead of X-ray (Photo courtesy of Philips)

3D Human GPS Powered By Light Paves Way for Radiation-Free Minimally-Invasive Surgery

In vascular surgery, doctors frequently employ endovascular surgery techniques using tools such as guidewires and catheters, often accessing through arteries like the femoral artery. This method is known... Read more

MRI

view channel
Image: The VR visualization platform provides patients and surgeons with access to real-time 3D medical imaging (Photo courtesy of Avatar Medical)

VR Visualization Platform Creates 3D Patient Avatars from CT and MR Images in Real-Time

Surgeons and patients must currently rely on black and white medical images interpreted by radiologists. This limitation becomes more pronounced in complex surgeries, leading to issues such as patient... Read more

Ultrasound

view channel
Image: Intravascular ultrasound provides a more accurate and specific picture of the coronary arteries (Photo courtesy of 123RF)

Intravascular Imaging Significantly Improves Outcomes in Cardiovascular Stenting Procedures

Individuals with coronary artery disease, which involves plaque accumulation in the arteries leading to symptoms like chest pain, shortness of breath, and heart attacks, often undergo a non-surgical procedure... Read more

General/Advanced Imaging

view channel
Image: Routine chest CT holds untapped potential for revealing patients at risk for cardiovascular disease (Photo courtesy of Johns Hopkins)

Routine Chest CT Exams Can Identify Patients at Risk for Cardiovascular Disease

Coronary artery disease (CAD) is the primary cause of death globally. Adults without symptoms but at risk can be screened using EKG-gated coronary artery calcium (CAC) CT scans, which are crucial in assessing... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The acquisition will expand IBA’s medical imaging quality assurance offering (Photo courtesy of Radcal)

IBA Acquires Radcal to Expand Medical Imaging Quality Assurance Offering

Ion Beam Applications S.A. (IBA, Louvain-La-Neuve, Belgium), the global leader in particle accelerator technology and a world-leading provider of dosimetry and quality assurance (QA) solutions, has entered... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.