We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Proton Beam Therapy Useful in Treating Sinonasal Cancers

By MedImaging International staff writers
Posted on 11 Mar 2010
Proton beam-radiation therapy shows encouraging results for patients with locally advanced sinonasal malignancies, according to a new study.

Researchers at Massachusetts General Hospital (MGH; Boston, USA) treated 99 patients with newly diagnosed sinonasal cancers with proton beam therapy between 1991 and 2003, with the median total dose of radiation to the primary tumor at 70 Gray. Most of the patients (67%), who usually presented with advanced stage tumors involving normal structures in the skull base such as eyes, optic nerves, brain, had undergone some type of surgery prior to their radiation. The researchers found that after a median follow-up of 8.5 years, the local control rates at five and eight years were 87% and 83%, respectively, and there was no statistically significant difference in local control per histological subtype, T stage, and surgery compared to biopsy. The study was presented at the Multidisciplinary Head and Neck Cancer Symposium, held during February 2010 in Chandler (AZ, USA).

"Due to the anatomical location of sinonasal cancers, conventional radiation therapy results in very poor local control and is associated with significant treatment-related toxicity,” said lead author radiation oncologist Annie Chan, M.D., of MGH and Harvard Medical School (Boston, MA, USA). "Proton beam radiation therapy, with its superior dose distribution, allows the delivery of higher doses of radiation to the tumor while sparing more or the healthy surrounding tissues. This study showed very encouraging results for these patients and now prospective multi-institutional studies are being planned to further study the use of proton therapy in the treatment of this rare but aggressive malignancy.”

Proton beam therapy is a form of particle therapy, which uses a stream of protons to irradiate diseased tissue, most often in the treatment of cancer. During treatment, a particle accelerator is used to target the tumor; these charged particles damage the DNA of cells, ultimately causing their death or interfering with their ability to reproduce. The chief advantage of proton therapy is increased precision by emphasizing the reduction of the integral dose to normal tissue, and thus a reduction of unwanted effects. The development of proton therapy began in the 1950s at accelerator laboratories, and in the last 20 years has expanded to hospital based facilities built specifically to perform this type of treatment. There are currently only 26 proton therapy centers worldwide, due to the size and cost of the cyclotron or synchrotron equipment needed.

Related Links:
Massachusetts General Hospital
Harvard Medical School

New
Post-Processing Imaging System
DynaCAD Prostate
New
Breast Localization System
MAMMOREP LOOP
Pocket Fetal Doppler
CONTEC10C/CL
Computed Tomography System
Aquilion ONE / INSIGHT Edition

Channels

Ultrasound

view channel
Image: The new implantable device for chronic pain management is small and flexible (Photo courtesy of The Zhou Lab at USC)

Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery

Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more

Nuclear Medicine

view channel
Image: The diagnostic tool could improve diagnosis and treatment decisions for patients with chronic lung infections (Photo courtesy of SNMMI)

Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections

Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.