We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App

AI Analyzes Data from MRI Scans, Biopsy and Blood Values to Diagnose Intestinal and Brain Disorders

By MedImaging International staff writers
Posted on 30 Jan 2024
Print article
Image: A computer system can connect and analyze diverse types of medical data for disease diagnosis (Photo courtesy of 123RF)
Image: A computer system can connect and analyze diverse types of medical data for disease diagnosis (Photo courtesy of 123RF)

Healthcare is now evolving towards a computer system that learns from extensive medical data and offers personalized advice for patients. This could involve, for instance, comparing a patient's MRI scan with a database of scans and comprehensive medical histories from similar cases. The complexity of this system lies in handling various data types, including textual information, blood test results, medical imagery, and genetic data.

An international team of researchers, which includes investigators from the Radboud University Medical Center in Nijmegen, Netherlands, and backed by a EURO 11 million grant from the European Commission, is in the process of creating an artificial intelligence (AI) system. This AI is designed to provide insights into several brain and intestinal disorders such as depression, anxiety, and obesity, and to explore the interrelations between these conditions. The computer system, named Ciompi, will be capable of connecting and analyzing diverse types of medical data. The focus is on disorders related to the brain and intestines due to the significant interplay between these two organs, known as the "gut-brain axis." The system will look for patterns in this multimodal data, like the simultaneous presence of specific conditions or states.

A considerable amount of data is already available from earlier studies, including 20,000 digitized images of intestinal polyps and biopsies, data on intestinal bacteria, genetic information, and numerous MRI brain scans. The researchers plan to interlink these data sets, and the broader scope of the EU project includes examining factors like air pollution. The computer system will employ algorithms that learn from this pool of data. These algorithms will be housed on the Grand Challenge platform, renowned for hosting global competitions to develop superior algorithms for medical image analysis, like CT or MRI scans. This platform also supports hosting various algorithms and data types, accessible in different formats. Presently, the platform accommodates medical images and digital pathology slides, but the project aims to incorporate additional data types such as genetic information. The new algorithms will be integrated into this platform. However, not all the data used for training the system will be stored online.

Increasingly, 'federated' methods are being employed to both train AI algorithms and access data. For example, in federated learning, the algorithms virtually visit different hospitals via the platform, learning directly from the medical data on-site, without the need to transfer the data out of the hospital. Once the algorithms have sufficiently learned from these virtual visits, they can then aid doctors in the future. For instance, Ciompi will be able to compare a patient's diverse data from the gut and brain, such as fMRI scans, intestinal biopsies, and metabolome sequences from fecal samples, with scans and medical records from similar cases. This system can then assist healthcare providers in diagnosing, predicting outcomes, identifying potential connections with other conditions, and recommending treatment strategies.

Related Links:
Radboud University Medical Center

Gold Member
Solid State Kv/Dose Multi-Sensor
1.5T MRI Scanner
Compact C-Arm
Arcovis DRF-C S21
FMT Radiographic Suite
AdvantagePlus ML1

Print article



view channel
Image: The new FDA-cleared AI-enabled applications have been integrated into the EPIQ CVx and Affiniti CVx ultrasound systems (Photo courtesy of Royal Philips)

Next-Gen AI-Enabled Cardiovascular Ultrasound Platform Speeds Up Analysis

Heart failure is a significant global health challenge, affecting approximately 64 million individuals worldwide. It is associated with high mortality rates and poor quality of life, placing a considerable... Read more

General/Advanced Imaging

view channel
Image: The NeuroLF ultra-compact brain Positron Emission Tomography (PET) scanner (Photo courtesy of Positrigo)

Breakthrough Brain PET System Aids Diagnosis of Neurological Disorders

Alzheimer's disease (AD) is the most prevalent type of dementia, representing approximately 70% of all dementia cases in individuals over 60 years of age. As of 2020, there were more than 55 million people... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Calantic Digital Solutions is an orchestrated suite of AI radiology solutions that aims to transform radiology (Photo courtesy of Bayer)

Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions

Imaging data constitutes approximately 90% of all medical data, with the volume of such data continuously expanding, thereby significantly increasing the workload for radiologists amid existing resource limitations.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.