We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Breast Ultrasound Combined with MRI Distinguishes Between Benign and Cancerous Lesions More Accurately

By MedImaging International staff writers
Posted on 10 Nov 2023
Print article
Image: Ultrasound combined with MRI is better able to identify cancerous lesions in breast tissue (Photo courtesy of 123RF)
Image: Ultrasound combined with MRI is better able to identify cancerous lesions in breast tissue (Photo courtesy of 123RF)

In breast imaging, nonmass-like lesions, which are areas in the breast with altered echotexture and no definitive shape, pose a diagnostic challenge. A new study has highlighted the potential of combining ultrasound and MRI to improve the differentiation between benign and malignant breast nonmass-like lesions.

The study by researchers at Chinese PLA General Hospital (Beijing, China) revealed that using ultrasound in conjunction with MRI is more effective in differentiating between benign and malignant lesions compared to using either method alone. This combined approach could lead to enhanced diagnostic accuracy. Both ultrasound and MRI have limitations that can result in incorrect identification of lesions, often leading to unnecessary biopsies. The research team explored the effectiveness of MRI in distinguishing between benign and malignant lesions after they were initially identified as nonmass-like by ultrasound. The hypothesis was that using two imaging techniques together might be more effective than one alone.

For the study, the researchers created a training dataset involving 180 patients with 183 nonmass-like lesions, comprising 88 benign and 95 malignant cases. Additionally, a validation dataset included 61 patients with 61 lesions, split between 30 benign and 31 malignant cases. The lesions were examined using MRI, ultrasound, and then a combination of both methods. In both datasets, the combined approach was effective in diagnosing cancer. In the training set, the combined method showed significant statistical improvement over MRI or ultrasound alone in terms of area under the curve (AUC) and specificity values. In the validation set, the combined method was superior to ultrasound alone but not to MRI alone.

The study found that malignant lesions had a significantly higher frequency of calcifications than benign lesions. Lesions with calcifications were found to be 5.6 times more likely to be malignant than those without, aligning with previous research indicating a high association of malignancy with hypo-echoic areas on ultrasound with calcifications. The combined method also identified two false-negative lesions, which were small and lacked typical malignant sonographic features, and correctly reclassified 11 false-positive lesions as benign. Pathology results were confirmed through surgical excision or biopsy.

“The integrated diagnostic strategy of US combined with MRI exhibited good performance for breast NMLs compared with either modality used alone, which can improve the diagnostic specificity while maintaining high sensitivity,” noted the researchers.

Related Links:
Chinese PLA General Hospital

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Ultrasound Table
Ergonomic Advantage (EA) Line
Ultrasound Needle Guide
Ultra-Pro II
Color Doppler Ultrasound System
DRE Crystal 4PX

Print article

Channels

MRI

view channel
Image: uMR Jupiter 5T MRI system is the world\'s first whole-body ultra-high field MRI to officially come to market (Photo courtesy of United Imaging)

World's First Whole-Body Ultra-High Field MRI Officially Comes To Market

The world's first whole-body ultra-high field (UHF) MRI has officially come to market, marking a remarkable advancement in diagnostic radiology. United Imaging (Shanghai, China) has secured clearance from the U.... Read more

Nuclear Medicine

view channel
Image: The multi-spectral optoacoustic tomography (MSOT) machine generates images of biological tissues (Photo courtesy of University of Missouri)

New Imaging Technique Monitors Inflammation Disorders without Radiation Exposure

Imaging inflammation using traditional radiological techniques presents significant challenges, including radiation exposure, poor image quality, high costs, and invasive procedures. Now, new contrast... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.