We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




MRI-Based Algorithm Accurately Predicts Spinal Pathologies

By MedImaging International staff writers
Posted on 09 Oct 2023
Image: The MRI-based algorithm can differentiate between different spinal pathologies (Photo courtesy of 123RF)
Image: The MRI-based algorithm can differentiate between different spinal pathologies (Photo courtesy of 123RF)

Various types of spinal pathologies exist, ranging from trauma and degenerative diseases to infections, neoplasms, inflammatory conditions, and tumors. Therefore, clinical evaluation often relies on laboratory tests and imaging studies to guide diagnosis and treatment decisions. Although biopsy is the definitive method for diagnosis, it's invasive and expensive. Now, a new study has revealed that a deep-learning algorithm using MRI scans can effectively distinguish between different types of spinal pathologies. The study showed that the algorithm's accuracy was moderate for the validation group but high for the test group.

Researchers from the Tel Aviv Medical Center (Tel Aviv, Israel) built the deep-learning algorithm on the Fast.ai framework on top of the PyTorch environment and uses pre-surgery MRI data and post-surgery pathological findings for its evaluations. The data used for training and validation were organized in a five-fold cross-validation format. The study examined MRI data from 231 patients who had different spinal pathologies: carcinoma, infection, meningioma, and schwannoma. The research indicated that the algorithm achieved an average accuracy of 0.78 in the validation set and 0.93 in the test set.

While the researchers admit that the algorithm isn't as precise as traditional pathology reports, they see it as a promising tool for the timely diagnosis of spinal conditions. It could potentially reduce the need for riskier, more invasive procedures like biopsies. Future research, they suggest, should focus on integrating larger and more diverse patient datasets to assess the algorithm's broader applicability. They also highlighted the need for additional studies to explore the practicality of using deep-learning methods for identifying spinal pathologies via MRI.

“Although based on a relatively small, segregated cohort, this study represents the power of deep learning tools in prediction spinal pathologies and lays the foundations for developing deep learning-based algorithms for this purpose,” wrote the authors.

Related Links:
Tel Aviv Medical Center

Mammography System (Analog)
MAM VENUS
X-ray Diagnostic System
FDX Visionary-A
Digital X-Ray Detector Panel
Acuity G4
Ultrasonic Pocket Doppler
SD1

Channels

Nuclear Medicine

view channel
Image: The new tracer, 64Cu-NOTA-EV-F(ab′)2​, targets nectin-4, a protein strongly linked to tumor growth in both TNBC and UBC cancer types. (Wenpeng Huang et al., DOI: 10.2967/jnumed.125.270132)

PET Tracer Enables Same-Day Imaging of Triple-Negative Breast and Urothelial Cancers

Triple-negative breast cancer (TNBC) and urothelial bladder carcinoma (UBC) are aggressive cancers often diagnosed at advanced stages, leaving limited time for effective treatment decisions.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.