We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




New Approach Combines Deep Learning and Physics to Fix Motion-Corrupted MRI Scans

By MedImaging International staff writers
Posted on 18 Aug 2023
Image: A deep learning model is capable of motion correction in brain MRI (Photo courtesy of MIT)
Image: A deep learning model is capable of motion correction in brain MRI (Photo courtesy of MIT)

MRI (Magnetic Resonance Imaging) is known for its superior ability to provide high-quality soft tissue contrast, making it a preferred choice over other imaging techniques like X-rays or CT scans. However, one of the challenges with MRI is its extreme sensitivity to even the smallest movements, leading to image artifacts. Such artifacts can obscure essential details, putting patients at risk of being misdiagnosed or receiving incorrect treatment. The process of an MRI scan varies in duration, ranging from a matter of minutes to an entire hour, depending on the specific images required. Even during the quickest scans, minor movements can greatly distort the resulting image. While in typical camera imaging, motion results in a localized blur, motion during an MRI scan can cause artifacts that corrupt the entire image. Some patients may be anesthetized or asked to control their breathing to minimize movement, but these solutions are not always feasible, especially in specific populations such as children or patients with psychiatric disorders.

Researchers at MIT (Cambridge, MA, USA) have risen to this challenge by creating a novel deep-learning model that can correct motion in brain MRI scans. This method combines physics-based modeling with deep learning techniques, enabling the construction of a motion-free image from corrupted data, without the need to alter the actual scanning process. The brilliance of this combined approach is its ability to ensure consistency between the image produced and the actual physical measurements of what is being depicted. If this balance is not maintained, the model could create "hallucinations"—images that look realistic but are physically and spatially incorrect. This could lead to even more misleading diagnoses. The application of an MRI free from motion artifacts would not only enhance patient outcomes but also has broad-reaching implications, especially for patients with neurological disorders causing involuntary movements, such as Alzheimer's or Parkinson's disease.

The impact of motion artifacts is not merely confined to patient diagnosis. An earlier study estimated that motion-related issues affect 15% of brain MRIs, leading to repeated scans or extended imaging sessions. This necessity for re-imaging translates into increased hospital costs per scanner. The researchers believe that their innovation could be further expanded. Future investigations might delve into more complex types of head movement or explore motion-related challenges in other parts of the body. For example, fetal MRI, which faces the problem of rapid and unpredictable motion, requires an approach that goes beyond simple translations and rotations. The development of a motion correction method for brain MRI scans marks a significant advancement in medical imaging that can improve diagnostic accuracy as well as reduce healthcare costs.

Related Links:
MIT

Adjustable Mobile Barrier
M-458
Computed Tomography System
Aquilion ONE / INSIGHT Edition
Medical Radiographic X-Ray Machine
TR30N HF
Portable X-ray Unit
AJEX140H

Channels

Nuclear Medicine

view channel
Image: LHSCRI scientist Dr. Glenn Bauman stands in front of the PET scanner (Photo courtesy of LHSCRI)

New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer

Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.