We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

AI Improves Prediction of Sudden Cardiac Death Using MRI Scans

By MedImaging International staff writers
Posted on 18 Jul 2023
Print article
Image: Integrating data from magnetic resonance imaging can add prognostic value to risk models (Photo courtesy of Freepik)
Image: Integrating data from magnetic resonance imaging can add prognostic value to risk models (Photo courtesy of Freepik)

Hypertrophic cardiomyopathy (HCM) is a genetic condition that causes the heart muscle to thicken abnormally, impacting its ability to effectively pump oxygenated blood throughout the body. HCM, while often asymptomatic, can lead to shortness of breath, arrhythmia, and sudden cardiac death. Typically, patients diagnosed with this condition are monitored for the presence of cardiac scar tissue, a significant risk factor for sudden cardiac death, using magnetic resonance imaging (MRI). A relatively new AI technology, radiomics, offers a quantitative approach to medical imaging, extracting more data from medical images to better understand diseases and predict patient outcomes. Now, a new study has found that radiomic data drawn from the MRI scans of HCM patients may aid in predicting arrhythmic events and potential sudden death.

The team of physician-researchers at Beth Israel Deaconess Medical Center (BIDMC, Boston, MA, USA) and Lahey Hospital & Medical Center (LHMC, Burlington, MA, USA) analyzed cardiac imaging data from 1,229 HCM patients treated at academic medical centers in Boston, Toronto, and Florence from 2003 to 2018. Each patient's risk of sudden cardiac death within five years was calculated using two existing risk score models that rely on clinical and imaging variables, including age, family history of sudden cardiac death, thickness of the heart wall, and scar tissue burden. Subsequently, the researchers used the patients' MRIs to generate scar tissue maps, extracting an extensive set of radiomic features, including 14 shape parameters and 930 texture features, resulting in 1,888 radiomic features representing the shape and texture of each patient's scar tissue map. These data were then used to develop new mathematical models for predicting sudden cardiac death probability.

Upon examining the patients' outcomes, the researchers found that 30 patients (2.4%) experienced a sudden cardiac death event within a follow-up period of up to 6.5 years. Incorporating radiomic features with clinical risk assessment scores significantly improved risk prediction, with one model correctly identifying 19 of the patients who experienced a sudden cardiac death event as high-risk. Furthermore, the analysis identified a significant prognostic radiomic feature for predicting sudden cardiac death risk - a texture feature of the scar tissue map. While further research is required, this discovery illustrates how radiomics can potentially reveal new biomarkers useful for monitoring patients with HCM and other conditions with minimal clinical signs and symptoms.

“Advances in imaging technologies and image analysis tools have allowed the investigation of novel features to predict the risk of sudden cardiac death in patients with HCM,” said Martin Maron, MD, Director of the Hypertrophic Cardiomyopathy Center at LHMC. “Our proof-of-concept study showed that radiomics analysis can add incremental prognostic value to current established risk prediction models, potentially saving lives.”

Related Links:

Gold Supplier
128 Slice CT Scanner
Supria 128
Gold Supplier
Conductive Gel
DR System Console
Perform-X Smart Console
Silver Supplier
Bucky Protector
Bucky Protector

Print article
Sun Nuclear -    Mirion



view channel
Image: The AI model improves tumor removal accuracy during breast cancer surgery (Photo courtesy of UNC School of Medicine)

AI Model Analyzes Tumors Removed Surgically in Real-Time

During breast cancer surgery, the surgeon removes the tumor, also known as a specimen, along with a bit of the adjacent healthy tissue to ensure all cancerous cells are excised. This specimen is then X-rayed... Read more


view channel
Image: FloPatch is a revolutionary tool that facilitates real-time precision in IV fluid management in sepsis (Photo courtesy of Flosonics)

Wireless, Wearable Doppler Ultrasound Revolutionizes Precision Fluid Management in Sepsis Care

When a patient comes to the hospital with sepsis, administering intravenous (IV) fluids is usually the first course of action. However, too much IV fluid can do more harm than good, causing additional... Read more

Nuclear Medicine

view channel
Image: An AI model can evaluate brain tumors on PET (Photo courtesy of Freepik)

AI Model for PET Imaging Determines Patient Response to Brain Tumor Treatments

The assessment of changes in metabolic tumor volume (MTV) through PET scans using specific radiotracers like F-18 fluoroethyl tyrosine (FET) plays a vital role in evaluating the treatment response in patients... Read more

General/Advanced Imaging

view channel
Image: Annalise Enterprise CTB acts like a ‘second pair of eyes’ for radiologists (Photo courtesy of Annalise.ai)

Deep Learning System Boosts Radiologist Accuracy and Speed for Head CTs

Non-contrast computed tomography of the brain (NCCTB) is a commonly employed method for identifying intracranial pathology. Despite its frequent use, the complex scan outcomes are prone to being misunderstood.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.