We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New MRI Technique Could Be Used to Detect Breast and Prostate Cancers

By MedImaging International staff writers
Posted on 19 Jun 2023
Print article
Image: New MRI technique that captures COVID-19’s impact on the brain could also detect breast and prostate cancers (Photo courtesy of Freepik)
Image: New MRI technique that captures COVID-19’s impact on the brain could also detect breast and prostate cancers (Photo courtesy of Freepik)

Correlated diffusion imaging (CDI) is an innovative MRI technique that offers enhanced visualization of the movement of water molecules in tissue by combining and analyzing MRI signals obtained at different gradient pulse strengths and timings. Initially developed as a promising imaging tool for cancer detection, new research has now uncovered its potential for assessing various conditions, including COVID-19's impact on the brain as well as detecting breast and prostate cancers.

Engineers at the University of Waterloo (Waterloo, ON, Canada) had previously devised CDI as a means to enhance imaging measurements for cancer detection. Recognizing its capabilities, scientists at Baycrest’s Rotman Research Institute (Toronto, Canada) embarked on a groundbreaking study to explore CDI's potential in identifying brain changes associated with COVID-19. The subsequent tests confirmed the hypothesis. CDI revealed altered diffusion patterns in the frontal-lobe white matter, showing less restricted water molecule diffusion in COVID-19 patients. Simultaneously, it exhibited more restricted diffusion in the cerebellum of individuals affected by COVID-19.

The Rotman study is one of the few to shed light on the effects of COVID-19 on the brain. Significantly, it is the first to report diffusion abnormalities in the white matter of the cerebellum. While the study aimed to demonstrate changes rather than specific brain damage resulting from COVID-19, its final report does discuss potential sources of such alterations and their potential connections to diseases and damage. Future investigations could delve into whether COVID-19 leads to actual brain tissue damage and explore any potential changes in the brain's grey matter.

“Hopefully, this research can lead to better diagnoses and treatments for COVID-19 patients,” said Alexander Wong, a systems design engineering professor at University of Waterloo who developed CDI. “And that could just be the beginning for CDI as it might be used to understand degenerative processes in other diseases such as Alzheimer’s or to detect breast or prostate cancers.”

Related Links:
University of Waterloo
Rotman Research Institute 

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Ultrasound Table
Ergonomic Advantage (EA) Line
Ultrasound Needle Guide
Ultra-Pro II
New
Ultrasound Color LCD
U156W

Print article

Channels

Nuclear Medicine

view channel
Image: Researchers have identified a new imaging biomarker for tumor responses to ICB therapy (Photo courtesy of 123RF)

New PET Biomarker Predicts Success of Immune Checkpoint Blockade Therapy

Immunotherapies, such as immune checkpoint blockade (ICB), have shown promising clinical results in treating melanoma, non-small cell lung cancer, and other tumor types. However, the effectiveness of these... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.