We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

First Real-Time Imaging of Human Fetal Heart Performed Using Low-Field MRI

By MedImaging International staff writers
Posted on 06 Jun 2023
Print article
Image: Fetal cardiac 3D MRI at low field (Photo courtesy of CHLA)
Image: Fetal cardiac 3D MRI at low field (Photo courtesy of CHLA)

For patients with easy access to medical care, ultrasound often serves as an effective method for fetal examination, and MRI isn't usually necessary. However, MRI access is not universally available. Moreover, it may sometimes be too late in a pregnancy to yield useful ultrasound results, and larger body sizes can also interfere with obtaining clear images from a fetal echocardiogram. When ultrasound fails to diagnose a specific heart issue, it usually means waiting until after the baby's birth to identify the problem. In such cases, MRI could provide a solution. In a breakthrough research finding, investigators have used novel technology to obtain the first real-time, diagnostic-quality MRI images of fetal heart disease.

Researchers at Children’s Hospital Los Angeles (CHLA, Los Angeles, CA, USA) are collaborating with the University of Southern California (USC, Los Angeles, CA, USA) and The Hospital for Sick Children (Toronto, Canada) in a pioneering a project that could revolutionize pediatric imaging for the heart, lungs, and beyond. In their study, the team capitalized on low-field, high-resolution MRI that has the potential to perform real-time imaging of a human fetal heart without the need for cardiac synchronization. This approach allowed them to visualize the fetal heart beating in real-time via 3D MRI at low field, something never before achieved with MRI.

The team focused on low-field MRI because utilizing a weaker magnet, compared to a stronger one, offers multiple advantages, especially when imaging body structures that move or are located near air. A strong magnet provides a stronger signal, but movement or air can distort the image. In contrast, a weaker magnet does not create such distortions. The researchers found that lower field strength may be superior for imaging organs like the heart, lungs, and abdomen, especially in a constantly moving fetus. They demonstrated that it is possible to compensate for the lower signal strength when imaging at one-third of the field strength and produce a higher-resolution picture of the heart using advanced computer graphics to realign sweeps of these real-time images.

In addition to its use for fetal cardiac imaging, low-field MRI also promises advantages in pediatric imaging. Standard MRIs performed on babies or small children often require general anesthesia to ensure they remain perfectly still. Now, the same low-field tools being developed for imaging a moving fetus could be used for imaging a restless child without anesthesia. By applying this innovative concept to pediatric imaging, the researchers have shown that standard fetal MRIs, like brain MRIs, can be conducted at 0.55T. Low-field MRI will also be highly beneficial in cases where there is metal in the body, such as in children with pacemakers or metal cardiovascular devices. Furthermore, low-field MRI could broaden its scope to include applications like lung imaging in premature babies or swallowing studies. The researchers acknowledge the need for significant technical development to fully exploit this technology's potential, and expect deep learning and artificial intelligence to play a crucial role in producing these images.

Related Links:
The Hospital for Sick Children 

Gold Supplier
Conductive Gel
Gold Supplier
128 Slice CT Scanner
Supria 128
X-Ray Flat Panel Detector
PACS Workstation
CHILI WebViewer NG

Print article
Sun Nuclear -    Mirion



view channel
Image: FloPatch is a revolutionary tool that facilitates real-time precision in IV fluid management in sepsis (Photo courtesy of Flosonics)

Wireless, Wearable Doppler Ultrasound Revolutionizes Precision Fluid Management in Sepsis Care

When a patient comes to the hospital with sepsis, administering intravenous (IV) fluids is usually the first course of action. However, too much IV fluid can do more harm than good, causing additional... Read more

Nuclear Medicine

view channel
Image: An AI model can evaluate brain tumors on PET (Photo courtesy of Freepik)

AI Model for PET Imaging Determines Patient Response to Brain Tumor Treatments

The assessment of changes in metabolic tumor volume (MTV) through PET scans using specific radiotracers like F-18 fluoroethyl tyrosine (FET) plays a vital role in evaluating the treatment response in patients... Read more

General/Advanced Imaging

view channel
Image: The AI software improves endovascular thrombectomy treatment times for stroke patients (Photo courtesy of 123RF)

AI Detects LVO from CT Angiograms to Improve Endovascular Thrombectomy Treatment Times for Stroke Patients

Large vessel occlusion (LVO) happens when a key artery in the brain gets blocked, and it's considered a particularly serious form of stroke. LVOs make up an estimated 24% to 46% of acute ischemic strokes.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The Zenition 70 mobile C-arm with flat detector (Photo courtesy of Philips)

Global Fixed and Mobile C-Arms Market Driven by Increasing Surgical Procedures

The evolution of C-arm technology has been truly remarkable, ushering in the era of mobile and mini C-arms. These advancements have provided surgeons with the gift of mobility and improved image quality,... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.