We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

AI-Based MRI Pre-Screening Tool Accurately Detects Leadless Implanted Electronic Devices

By MedImaging International staff writers
Posted on 28 Oct 2022
Print article
Image: The AI model can deliver inference results to radiologists for adjudication before clinical use (Photo courtesy of SPIE)
Image: The AI model can deliver inference results to radiologists for adjudication before clinical use (Photo courtesy of SPIE)

Small leadless implanted electronic devices (LLIEDs) have emerged as a safer alternative to lead-dependent cardiac rhythm-management devices, with advancements in miniaturization, battery technology, and communication. Intrathoracic LLIEDs can not only help in cardiac pacing but also enable the monitoring of cardiovascular and electrophysiologic activity, and non-cardiovascular physiology. However, their subsequent detection and identification (location, general category, specific type, etc.) is critical, especially prior to situations like magnetic resonance imaging (MRI) scans involving electromagnetic and radiofrequency exposures.

In pre-MRI safety screening, existing methods involving direct interaction between the patient and physician, electronic medical records (EMR) and chest X-ray (CXR) provide limited and inadequate information. They are, therefore, insufficient for the recognition of evolving, infrequently used, and much smaller LLIEDs. Moreover, the issue is compounded by the small LLIED size, suboptimal screening technique, motion-related blurring, and similarities in appearance. LLIEDs can easily be overlooked on a CXR during emergency situations. Moreover, the inability to tell whether an LLIED is a pacemaker or a recorder can put the patient at a considerable risk during MRI scan. Although both are considered “MRI conditional,” the pacemaker requires cardiology device and patient oversight before and after, and possibly during, the MRI examination.

Responding to the need for prompt and accurate detection of LLIEDs during MRI pre-screening, researchers at SPIE (Bellingham, WA, USA) had previously developed an artificial intelligence (AI)-based model. In a recent study, the research team assessed the readiness and operational prerequisites of this model with the aim of progressing towards real-world applications. For the pre-deployment assessment, the team used a two-tier cascading methodology comprising LLIED detection (tier 1) followed by classification (tier 2). They performed a five-fold cross validation during tier 1 to assess the durability of the “Original LLIED Model” initially comprising nine LLIED categories. To imitate real-world trialing, they further applied the two-tier cascading AI model on 150 new CXR images from randomly selected newer patients, already revealing three new LLIED categories.

Further, the team incorporated some essential technical developments to facilitate real-world deployment of their AI model. These included a Zero-Footprint (ZF GUI/Viewer) viewing platform for imaging, DICOM-Structured reports (DICOM-SR) for enabling end-user inference-result adjudication and, most importantly, continuous learning with the addition of the 3 new LLIED types to create a 12-class “Updated LLIED Model.” They then used new additional cases to further test this model using the two-tier methodology.

The tier 1 study yielded 100% detection/location sensitivity of LLIEDs for both the 9-class and 12-class models, and its durability was further attested by the five-fold cross validation. In tier 2, both models achieved very high accuracy in identifying the type of LLIED (MRI safety category and specific type). While no LLIEDs remained undetected in tier 1, the few cases of misidentification occurring in tier 2 were attributed to suboptimal image quality. Remarkably, the AI model did not misidentify any of the “MRI stringently conditional” or “MRI unsafe” LLIEDs.

Focusing on mimicking real-world conditions for validating their model, the team incorporated continuous learning, retraining, and modernization of AI models based on end-user experience. This was the first study of its kind to report AI-based radiographic detection and identification of LLIEDs. Going forward, the researchers plan to capitalize on these results and launch the AI model in a relevant clinical setting. They also expect to address the limitations of this study by future retraining and fine-tuning of the AI model.

“LLIEDs span a spectrum of categories based on their MRI exposure safety, from being ‘MRI conditional’ to being ‘MRI unsafe.’ Our AI model for recognizing continuously evolving LLIEDs is based on LLIED classification obtained from the identification and labeling of regions of interest from retrospective and/or future organization-wide CXR data,” explained Richard D. White, an eminent radiologist at Mayo Clinic Florida, who led the research. “While the actual value of the AI model can only be assessed in a true real-world clinical setting, these results harbor optimism in favor of deploying the AI model in the near future for assisting pre-screening evaluation by radiologists for patient safety.”

Related Links:

Gold Supplier
Ultrasound Transducer/Probe Cleaner
Transeptic Cleaning Solution
Ultrasound System
Ultimus 9E
Mobile Radiography System
NeuVision 550M (Plus)
Barrier Mount
RayShield SideWinder

Print article



view channel
Image: New focused ultrasound is effective for treating Parkinson’s, movement disorders (Photo courtesy of Pexels)

New Focused Ultrasound Treatment Proves Effective for Parkinson’s Disease Patients

Parkinson's disease is a neurological condition characterized by the loss of dopamine neurons within the brain. While medications such as levodopa can be effective in managing this condition, some patients... Read more

Nuclear Medicine

view channel
Image: Tracking radiation treatment in real time promises safer, more effective cancer therapy (Photo courtesy of Pexels)

Real-Time 3D Imaging Provides First-of-Its-Kind View of X-Rays Hitting Inside Body During Radiation Therapy

Radiation is used in treatment for hundreds of thousands of cancer patients each year, bombarding an area of the body with high energy waves and particles, usually X-rays. The radiation can kill cancer... Read more

General/Advanced Imaging

view channel
Image: Viz.ai is the first to receive FDA 510(k) clearance for an AI algorithm for abdominal aortic aneurysm (Photo courtesy of Pexels)

AI Algorithm Flags and Triages Suspected Abdominal Aortic Aneurysms from Chest CT Scans

An abdominal aortic aneurysm (AAA) denotes a bulge in the abdominal aorta, the chief artery that transfers blood from the heart to other parts of the body. If not detected and treated in time, AAA can... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.