We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

AI Medical Diagnostic Algorithm for MRI Image Analysis Uses Self-Learning Across Hospitals

By MedImaging International staff writers
Posted on 01 Sep 2022
Print article
Image: AI-based federated diagnostic algorithm efficiently learns across hospitals with data protection compliance (Photo courtesy of Pexels)
Image: AI-based federated diagnostic algorithm efficiently learns across hospitals with data protection compliance (Photo courtesy of Pexels)

Healthcare is currently being revolutionized by artificial intelligence. With precise AI solutions, doctors can be supported in diagnosis. However, such algorithms require a considerable amount of data and the associated radiological specialist findings for training. The creation of such a large, central database, however, places special demands on data protection. Additionally, the creation of the findings and annotations, for example the marking of tumors in an MRI image, is very time-consuming. To overcome these challenges, researchers have developed an algorithm that is able to learn independently across different medical institutions. The key feature of the algorithm is that it is "self-learning", i.e. it does not require extensive, time-consuming findings or markings by radiologists in the MRI images.

A multidisciplinary team from the Technical University of Munich (TUM, Munich, Germany) collaborated with other clinicians and researchers to develop an AI-based medical diagnostic algorithm for MRI images of the brain, without any data annotated or processed by a radiologist. Furthermore, this algorithm was to be trained "federally": In this way, the algorithm "comes to the data", so that the medical image data requiring special protection could remain in the respective clinic and did not have to be collected centrally. The federated algorithm was trained on more than 1,500 MR scans of healthy study participants from four institutions while maintaining data privacy.

The algorithm then was used to analyze more than 500 patient MRI scans to detect diseases such as multiple sclerosis, vascular disease, and various forms of brain tumors that the algorithm had never seen before. This opens up new possibilities for developing efficient AI-based federated algorithms that learn autonomously while protecting privacy. In their study, the researchers were able to show that the federated AI algorithm they developed outperformed any AI algorithm trained using only data from a single institution. To pool knowledge about MRI images of the brain, the research team trained the AI algorithm in different and independent medical institutions without violating data privacy or collecting data centrally. By protecting patient data while reducing radiologists' workloads, the researchers believe their federated AI technology will significantly advance digital medicine.

"Once this algorithm learns what MRI images of the healthy brain look like, it will be easier for it to detect disease. To achieve this requires intelligent computational aggregation and coordination between the participating institutes," said Prof. Dr. Albarqouni. PD Dr. Benedikt Wiestler, senior physician at TUM's University Hospital, who was involved in the study. "Training the model on data from different centers contributes significantly to the fact that our algorithm detects diseases much more robustly than other algorithms that are only trained with data from one center."

 

 


Print article
CIRS -  MIRION
Sun Nuclear -    Mirion

Channels

Radiography

view channel
Image: The FDA has cleared the CSA system with Dynamic Digital Radiography (Photo courtesy of 20/20 Imaging)

Advanced Digital X-Ray System Allows Clinicians to Capture and Visualize Anatomy in Motion

Dynamic Digital Radiography (DDR) is a revolutionary X-ray technology that enables the visualization of anatomy in motion, so clinicians can interpret the dynamic interaction of anatomical structures,... Read more

Ultrasound

view channel
Image: EG-740UT ultrasound endoscope combined with ARIETTA 850 provides outstanding ultrasound image quality (Photo courtesy of FUJIFILM)

Next-Gen Ultrasound Endoscope Enables Complex Diagnostic and Therapeutic Procedures

Endoscopic ultrasound is a specialist procedure performed utilizing an endoscope equipped with an ultrasonic transducer which emits and receives ultrasonic waves within the gastrointestinal tract, such... Read more

General/Advanced Imaging

view channel
Image: New guidance standardizes care for patients presenting with acute chest pain in the ED (Photo courtesy of Pexels)

New Guidance Recommends Coronary CTA as First-Line Test when Treating Acute Chest Pain in ED

Diagnosis and triage of emergency department (ED) patients with suspected acute coronary syndrome (ACS) consume a large and increasing amount of healthcare resources. ED overcrowding is associated with... Read more

Imaging IT

view channel
Illustration

Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology

The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.