Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
IBA-Radcal

Download Mobile App




Machine Learning Model Uses MRI Data to Identify Candidates for Liver Transplant

By MedImaging International staff writers
Posted on 22 Aug 2022

Post-treatment recurrence is an unpredictable complication after liver transplant for hepatocellular carcinoma (HCC) that is associated with poor survival. More...

Biomarkers are needed to estimate recurrence risk before organ allocation. A new study has found that machine learning (ML) models applied to presently underutilized imaging features could help construct more reliable criteria for organ allocation and liver transplant eligibility.

In the proof-of-concept study, researchers at Yale University School of Medicine (New Haven, CT, USA) evaluated the use of ML to predict recurrence from pretreatment laboratory, clinical, and MRI data in patients with early-stage HCC initially eligible for liver transplant. The study included 120 patients (88 men, 32 women; median age, 60 years) diagnosed with early-stage HCC between June 2005 and March 2018, who were initially eligible for liver transplant and underwent treatment by transplant, resection, or thermal ablation. Patients underwent pretreatment MRI and post-treatment imaging surveillance, and imaging features were extracted from post-contrast phases of pretreatment MRI examinations using a pre-trained convolutional neural network (VGG-16). Pretreatment clinical characteristics (including laboratory data) and extracted imaging features were integrated to develop three ML models - clinical, imaging, combined - for recurrence prediction within 1-6 years post-treatment.

Ultimately, all three models predicted post-treatment recurrence for early-stage HCC from pretreatment clinical (AUC 0.60–0.78, across all six time frames), MRI (AUC 0.71–0.85), and both data combined (AUC 0.62–0.86). Using imaging data as the sole model input yielded higher predictive performance than clinical data alone; however, combining both data types did not significantly improve performance over use of imaging data alone.

“The findings suggest that machine learning-based models can predict recurrence before therapy allocation in patients with early-stage HCC initially eligible for liver transplant,” wrote corresponding author Julius Chapiro from the department of radiology and biomedical imaging at Yale University School of Medicine.

Related Links:

Yale University School of Medicine


Ultrasound Needle Guidance System
SonoSite L25
Breast Localization System
MAMMOREP LOOP
Mobile X-Ray System
K4W
Half Apron
Demi
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Nuclear Medicine

view channel
Image: CXCR4-targeted PET imaging reveals hidden inflammatory activity (Diekmann, J. et al., J Nucl Med (2025). DOI: 10.2967/jnumed.125.270807)

PET Imaging of Inflammation Predicts Recovery and Guides Therapy After Heart Attack

Acute myocardial infarction can trigger lasting heart damage, yet clinicians still lack reliable tools to identify which patients will regain function and which may develop heart failure.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.