We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Machine Learning Model Uses MRI Data to Identify Candidates for Liver Transplant

By MedImaging International staff writers
Posted on 22 Aug 2022
Print article
Image: Machine learning models can predict hepatocellular carcinoma treatment response (Photo courtesy of Pexels)
Image: Machine learning models can predict hepatocellular carcinoma treatment response (Photo courtesy of Pexels)

Post-treatment recurrence is an unpredictable complication after liver transplant for hepatocellular carcinoma (HCC) that is associated with poor survival. Biomarkers are needed to estimate recurrence risk before organ allocation. A new study has found that machine learning (ML) models applied to presently underutilized imaging features could help construct more reliable criteria for organ allocation and liver transplant eligibility.

In the proof-of-concept study, researchers at Yale University School of Medicine (New Haven, CT, USA) evaluated the use of ML to predict recurrence from pretreatment laboratory, clinical, and MRI data in patients with early-stage HCC initially eligible for liver transplant. The study included 120 patients (88 men, 32 women; median age, 60 years) diagnosed with early-stage HCC between June 2005 and March 2018, who were initially eligible for liver transplant and underwent treatment by transplant, resection, or thermal ablation. Patients underwent pretreatment MRI and post-treatment imaging surveillance, and imaging features were extracted from post-contrast phases of pretreatment MRI examinations using a pre-trained convolutional neural network (VGG-16). Pretreatment clinical characteristics (including laboratory data) and extracted imaging features were integrated to develop three ML models - clinical, imaging, combined - for recurrence prediction within 1-6 years post-treatment.

Ultimately, all three models predicted post-treatment recurrence for early-stage HCC from pretreatment clinical (AUC 0.60–0.78, across all six time frames), MRI (AUC 0.71–0.85), and both data combined (AUC 0.62–0.86). Using imaging data as the sole model input yielded higher predictive performance than clinical data alone; however, combining both data types did not significantly improve performance over use of imaging data alone.

“The findings suggest that machine learning-based models can predict recurrence before therapy allocation in patients with early-stage HCC initially eligible for liver transplant,” wrote corresponding author Julius Chapiro from the department of radiology and biomedical imaging at Yale University School of Medicine.

Related Links:

Yale University School of Medicine


Print article
Sun Nuclear -    Mirion
CIRS -  MIRION

Channels

Radiography

view channel
Image: The FDA has cleared the CSA system with Dynamic Digital Radiography (Photo courtesy of 20/20 Imaging)

Advanced Digital X-Ray System Allows Clinicians to Capture and Visualize Anatomy in Motion

Dynamic Digital Radiography (DDR) is a revolutionary X-ray technology that enables the visualization of anatomy in motion, so clinicians can interpret the dynamic interaction of anatomical structures,... Read more

Ultrasound

view channel
Image: EG-740UT ultrasound endoscope combined with ARIETTA 850 provides outstanding ultrasound image quality (Photo courtesy of FUJIFILM)

Next-Gen Ultrasound Endoscope Enables Complex Diagnostic and Therapeutic Procedures

Endoscopic ultrasound is a specialist procedure performed utilizing an endoscope equipped with an ultrasonic transducer which emits and receives ultrasonic waves within the gastrointestinal tract, such... Read more

General/Advanced Imaging

view channel
Image: New guidance standardizes care for patients presenting with acute chest pain in the ED (Photo courtesy of Pexels)

New Guidance Recommends Coronary CTA as First-Line Test when Treating Acute Chest Pain in ED

Diagnosis and triage of emergency department (ED) patients with suspected acute coronary syndrome (ACS) consume a large and increasing amount of healthcare resources. ED overcrowding is associated with... Read more

Imaging IT

view channel
Illustration

Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology

The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.