We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Novel Brain MRI Technique Helps Identify Multiple Sclerosis Lesions

By MedImaging International staff writers
Posted on 25 Apr 2022
Print article
Image: Images show novel brain MRI techniques for detecting Central Vein Sign (Photo courtesy of Cedars-Sinai)
Image: Images show novel brain MRI techniques for detecting Central Vein Sign (Photo courtesy of Cedars-Sinai)

In patients with multiple sclerosis (MS), the immune system attacks the insulating layer that protects nerves. The disruption or loss of these layers results in lesions, which show up as white spots on MRI brain scans—the main tool for diagnosing the condition. But MS is not the only condition that can cause white spots to appear on an MRI and migraines are the most common cause of non-MS white spots on MRIs. As a result, patients who are misdiagnosed with MS are needlessly prescribed costly immune-modifying treatments that can increase risk for infection, cause organ damage and decrease the effectiveness of vaccines. Now, researchers are using advanced techniques for imaging the brain and eyes, along with new biomarkers, to present a clearer picture of MS. Their work could lead to improved diagnosis and treatment of the disease.

A team of physician and scientists in the Department of Neurology at Cedars-Sinai (Los Angeles, CA, USA) has identified biological sign called “central vein sign” that could help physicians determine whether white spots on a patient’s MRI are caused by MS or by something else, ultimately reducing misdiagnosis. MS lesions tend to form around tiny veins through which immune cells enter and attack brain tissue, so most lesions caused by MS have a vein in the middle. New MRI techniques pioneered by the researchers make central vein sign visible.

Ongoing studies at Cedars-Sinai and 10 other MS centers in North America are using the new technique to image 400 patients at risk of developing MS - the final step in scientifically validating central vein sign as a way to diagnose MS. Importantly, the new imaging technique can be used with widely available MRI scanners and performed quickly enough to fit the workflow of the typical radiology center. The team is also developing a machine learning algorithm to make evaluation of the imaging results easier for physicians. The central vein sign could also help doctors determine how well a patient is responding to treatment by confirming that any new lesions that develop are caused by MS and not something else.

The researchers are also focusing on imaging of the retina - the layer of tissue at the back of the eye - and the optic nerve that can also help improve MS diagnosis. Using a technology called optical coherence tomography (OCT), which functions like an MRI for the retina and optic nerve, the team has shown it can detect MS lesions that an MRI can miss. Optical coherence tomography captures 3D images of patients’ retinal layers, including the ganglion cell layer, which sends visual information to the brain. Retinal imaging could also help indicate how well a patient is responding to treatment. The team is continuing to study the role of OCT, along with a related technique called optical coherence tomography angiography (OCTA), as a way to understand how MS affects the blood vessels in the retina. While ocular nerve and retinal imaging is important to evaluate in MS patients, it is not yet widely available in practice. The team hopes their research will help change the standard of diagnostic care.

“Current MRI images don’t give us the whole picture, which is why we developed MRI sequences that improve image quality so that we can see very small veins, called veinules, in the brain,” said Pascal Sati, PhD, director of the Neuroimaging Program in the Department of Neurology and associate professor of Neurology at Cedars-Sinai, who pioneered the MRI technique. “We superimpose that over a conventional MRI image of the lesions so that it is clear which brain lesions have a central vein and are likely caused by MS.”

“Once the image is taken, our deep learning algorithm can analyze it very quickly and tell the clinician how many lesions show the central vein sign,” added Sati. “The number of lesions with the central vein sign can indicate whether or not the patient has MS.”

“The optic nerves are very small and difficult to image. Detecting lesions there can help us clinch an MS diagnosis, especially in patients who are relatively early on in their disease course,” said neurologist Omar Al-Louzi, MD, director of the Visual Outcomes Laboratory at Cedars-Sinai, whose research seeks to use the eye as a window to produce better outcomes for patients. “Shrinking of the ganglion cell layer often mirrors overall brain degeneration, and occurs in 70% to 80% of MS patients. This is why ganglion imaging could also help us improve diagnosis.”

Related Links:
Cedars-Sinai 

Gold Supplier
128 Slice CT Scanner
Supria 128
New
Gold Supplier
IMRT Thorax Phantom
CIRS Model 002LFC
New
Cart-Based Ultrasound System
SonoMax 9
3-in-1 Radiology, Fluoroscopy & Tomosynthesis System
StriXion

Print article
Sun Nuclear -    Mirion

Channels

Radiography

view channel
Image: Radiologists outperformed AI in identifying lung diseases on chest X-ray (Photo courtesy of RSNA)

Radiologists Beat AI in Detecting Common Lung Diseases on Chest X-Rays

Chest X-rays are frequently used for diagnosis, but it takes a lot of training and expertise to read these images correctly. Although the Food and Drug Administration (FDA) has approved some artificial... Read more

Ultrasound

view channel
Image: The new device targets ultrasound waves to precise spots in the brain (Photo courtesy of WUSTL)

Anatomically Precise Ultrasound-Based Technique to Enable Noninvasive Biopsies for Brain Tumors

The blood-brain barrier serves as a protective wall, keeping the brain safe from harmful elements like viruses and toxins in the blood. This makes it challenging for doctors to obtain molecular and genetic... Read more

Nuclear Medicine

view channel
Image: Imaging entire body instead of only the primary cancer site can provide a total estimate of HER2 expression (Photo courtesy of 123RF)

Whole-Body PET/CT Predicts Response to HER2-Targeted Therapy in Metastatic Breast Cancer Patients

Around 20% of women diagnosed with breast cancer show overexpression of human epidermal growth factor receptor 2 (HER2), making it a key therapy target for new as well as recurring cases.... Read more

General/Advanced Imaging

view channel
Image: Annalise Enterprise CTB acts like a ‘second pair of eyes’ for radiologists (Photo courtesy of Annalise.ai)

Deep Learning System Boosts Radiologist Accuracy and Speed for Head CTs

Non-contrast computed tomography of the brain (NCCTB) is a commonly employed method for identifying intracranial pathology. Despite its frequent use, the complex scan outcomes are prone to being misunderstood.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The partnership combines best-in-class AI-powered technologies for musculoskeletal imaging workflows (Photo courtesy of ImageBiopsy Lab)

AI-Powered Technologies to Aid Interpretation of X-Ray and MRI Images for Improved Disease Diagnosis

Musculoskeletal (MSK) conditions impact more people worldwide than issues related to the circulatory or respiratory systems. Even so, diagnostic procedures for these conditions often still lean on outdated... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.