We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Agfa Radiology

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

New MRI Technique Detects Multiple Sclerosis (MS) Brain Changes Earlier

By MedImaging International staff writers
Posted on 07 Jan 2022
Print article
Illustration
Illustration

A new neuroimaging technique can detect biochemical changes in the brains of people with multiple sclerosis (MS) early in the course of the disease, paving the way for faster MS treatment evaluation and other potential benefits.

The technique developed by scientists at the Medical University of Vienna (Vienna, Austria) could pave the way for faster MS treatment evaluation and other potential benefits. MS is a disease of the central nervous system that can cause fatigue, pain and impaired coordination. It affects nearly three million people worldwide, and incidence is rising. There is no cure, but physical therapy and medications can slow its progression.

Lesions to the brain’s signal-carrying white matter are the most readily detectable manifestation of MS on MRI. The lesions, linked to the loss of the protective coating around white matter fibers called myelin, represent only macroscopic tissue damage. A means to find changes in the brain at an earlier microscopic or biochemical stage would be beneficial.

An advanced imaging technique known as proton MR spectroscopy is a promising tool in this effort. MR spectroscopy of the brain can detect several metabolites that have potential relevance for MS. The researchers used the technique to compare biochemical changes in the brains of 65 people with MS with those of 20 healthy controls. They deployed an MRI scanner with a powerful 7-Tesla (T) magnet.

The results showed reduced levels of an amino acid derivative called N-acetylaspartate (NAA) in patients with MS. Lower levels of NAA have been linked to impaired integrity of neurons in the brain. People with MS also showed elevated levels of myo-inositol (MI), a compound involved in cell signaling. Higher levels are indicative of substantial inflammatory disease activity.

The metabolic alterations in normal-appearing white matter and cortical gray matter were associated with disability. According to the researchers, the results show a potential role for 7T MR spectroscopic imaging in visualizing MS pathology beyond demyelinating lesions. The changes detected by the new imaging technique have significant clinical applications. While more work is needed to confirm the results, the results support 7T MR spectroscopic imaging as a valuable new aid in the care of people with MS. The researchers are working to further improve the image quality of the new technique and fully integrate it for use in routine clinical MRI scanners.

“MRI of neurochemicals enables the detection of changes in the brain of multiple sclerosis patients in regions that appear inconspicuous on conventional MRI,” said study senior author Wolfgang Bogner, PhD, from the High Field MR Centre at the Medical University of Vienna in Vienna, Austria. “The visualized changes in neurochemistry of normal-appearing brain tissue correlated with the patients’ disabilities.”

“If confirmed in longitudinal clinical studies, this new neuroimaging technique could become a standard imaging tool for initial diagnosis, for disease progression and therapy monitoring of multiple sclerosis patients and, in concert with established MRI, might contribute to neurologists’ treatment strategies,” added Dr. Bogner.

Related Links:
Medical University of Vienna 


Print article

Channels

General/Advanced Imaging

view channel
Image: 3D cardiac map created with the EnSite X EP mapping system with OT (Photo courtesy of Abbott)

New Mapping System Improves Heart Rhythm Management

Thanks to omnipolar technology (OT), a new cardiac mapping system provides 360-degree views of the heart, regardless of catheter orientation. The Abbott (Abbott Park, IL, USA) EnSite X EP with OT system... Read more

Imaging IT

view channel
Illustration

Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology

The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read more

Industry News

view channel
Illustration

Global Breast Imaging Systems Market to Reach USD 1.3 Billion by 2024 Due to COVID-19-Led Patient Backlog

The global breast imaging market is expected to be driven by rising incidences of breast cancer, coupled with the huge backlog of women requiring breast cancer screening appointments due to COVID-19.... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.