We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




MRI AI Model Classifies Common Intracranial Tumors

By MedImaging International staff writers
Posted on 07 Sep 2021
Print article
Image: GradCAM color maps colors showing tumor prediction (Photo courtesy of WUSTL)
Image: GradCAM color maps colors showing tumor prediction (Photo courtesy of WUSTL)
An artificial intelligence (AI) 3D model is capable of classifying a brain tumor as one of six common types from a single magnetic resonance imaging (MRI) scan, claims a new study.

To develop the GradCAM algorithm, researchers at Washington University (WUSTL; St. Louis, MO, USA), used 2,105 T1-weighted MRI scans from four publicly available datasets, split into training (1396), internal (361), and an external (348) datasets. A convolutional neural network (CNN) was trained to discriminate between healthy scans and those with tumors, classified by type (high grade glioma, low grade glioma, brain metastases, meningioma, pituitary adenoma, and acoustic neuroma). Performance of the model was then evaluated, with feature maps plotted to visualize network attention.

The internal test results showed GradCAM achieved an accuracy of 93.35% across seven imaging classes (a healthy class and six tumor classes). Sensitivities ranged from 91% to 100%, and positive predictive value (PPV) ranged from 85% to 100%. Negative predictive value (NPV) ranged from 98% to 100% across all classes. Network attention overlapped with the tumor areas for all tumor types. For the external test dataset, which included only two tumor types (high-grade glioma and low-grade glioma), GradCAM had an accuracy of 91.95%. The study was published on August 11, 2021, in Radiology: Artificial Intelligence.

“These results suggest that deep learning is a promising approach for automated classification and evaluation of brain tumors. The model achieved high accuracy on a heterogeneous dataset and showed excellent generalization capabilities on unseen testing data,” said lead author Satrajit Chakrabarty, MSc, of the department of electrical and systems engineering. “This network is the first step toward developing an artificial intelligence-augmented radiology workflow that can support image interpretation by providing quantitative information and statistics.”

Deep learning is part of a broader family of AI machine learning methods based on learning data representations, as opposed to task specific algorithms. It involves CNN algorithms that use a cascade of many layers of nonlinear processing units for feature extraction, conversion, and transformation, with each successive layer using the output from the previous layer as input to form a hierarchical representation.

Related Links:
Washington University

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Color Doppler Ultrasound System
DRE Crystal 4PX
MRI System
uMR 588
New
DR Flat Panel Detector
1500L

Print article
Radcal

Channels

Radiography

view channel
Image: The study supports annual screening beginning at age 40 as the best way to diagnose cancer early (Photo courtesy of 123RF)

Annual Mammography Beginning At 40 Cuts Breast Cancer Mortality By 42%

Breast cancer remains a leading cause of cancer-related deaths among women in the United States. Although studies have shown that regular mammography screenings can cut breast cancer fatalities by 40%,... Read more

Ultrasound

view channel
Mindray`s comprehensive range of ultrasound machines include the Resona I9 (photo courtesy of Mindray)

Non-Invasive Ultrasound Technique Helps Identify Life-Changing Complications after Neck Surgery

Nasopharyngoscopy is an intrusive diagnostic medical procedure that involves the examination of the internal structures of the nose and throat (nasopharynx) using an endoscope inserted through the patient’s nose.... Read more

Nuclear Medicine

view channel
Image: The PET imaging technique can noninvasively detect active inflammation before clinical symptoms arise (Photo courtesy of 123RF)

New PET Tracer Detects Inflammatory Arthritis Before Symptoms Appear

Rheumatoid arthritis, the most common form of inflammatory arthritis, affects 18 million people globally. It is a complex autoimmune disease marked by chronic inflammation, leading to cartilage and bone... Read more

General/Advanced Imaging

view channel
Image: The new AI-enabled CT 5300 aims to bring confident diagnosis to more patients at low cost (Photo courtesy of Royal Philips)

AI-Enabled CT System Provides More Accurate and Reliable Imaging Results

Computed Tomography (CT) plays a critical role in diagnosing cardiac diseases. Recent research advocates a "CT first" approach for patients with chest pain and undiagnosed coronary artery disease, thus... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The acquisition will expand IBA’s medical imaging quality assurance offering (Photo courtesy of Radcal)

IBA Acquires Radcal to Expand Medical Imaging Quality Assurance Offering

Ion Beam Applications S.A. (IBA, Louvain-La-Neuve, Belgium), the global leader in particle accelerator technology and a world-leading provider of dosimetry and quality assurance (QA) solutions, has entered... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.