We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Nonlinear Metamaterials Could Revolutionize MRI Scanning

By MedImaging International staff writers
Posted on 20 Nov 2019
Print article
Image: Intelligent metamaterials Enhance MRI images (Photo courtesy of BU)
Image: Intelligent metamaterials Enhance MRI images (Photo courtesy of BU)
A new intelligent metamaterial could make the entire magnetic resonance imaging (MRI) process faster, safer, and more accessible to patients.

Developed by researchers at Boston University (BU; MA, USA), the coupled nonlinear metamaterial (NLMM) features a self‐adaptive response that amplifies the magnetic field commiserate to the resonance of the radio‐frequency (RF) excitation strength. The NLMM is suppressed in response to higher degrees of RF and recovers during a low excitation strength phase, thus increasing the signal-to-noise ratio (SNR) 10-fold, greatly enhancing image quality and reducing scan time, and thus opening up a new way to obtain crisper MRI images at very low cost.

The nonlinear response of the NLMM behavior is passive, selectively boosting low-energy RF emissions from the patient's body in normal mode, and turning itself off during the millisecond bursts of high-energy RF transmission from the MRI machine. The off-time, which last just a few milliseconds, allows intelligent NLMM to enhance the energy sent back to the MRI. It also diminishes the patient's overall exposure to radio wave radiation and mitigates potential safety concerns. The study was published on October 30, 2019, in Advanced Materials.

“The intelligent metamaterial consists of an array of metallic helical resonators closely packed with a passive sensor,” said lead author professor of radiology Xiaoguang Zhao, MD. “When the high-energy radio waves are coming in, the metamaterial detects the high energy level and turns off the resonance automatically. With low-energy radio excitation, the metamaterial turns on the resonance and enhances the magnetic component of the radio wave. We can now build smart materials that can interact with radio waves intelligently, enhancing the wanted signal while letting the unwanted signal go.”

MRI represents a powerful diagnostic tool in the armamentarium of modern healthcare that is widely applied across a spectrum of diseases, from stroke to cancer imaging and beyond. It can be used to generate images from a range of tissue properties without ionizing radiation, resulting in an inherently high degree of tissue contrast. Chief among the performance metrics of MRI systems is SNR, which may be leveraged to boost overall acquisition performance, from image resolution to the efficiency of image acquisition, and has been demonstrated to improve anatomic delineation and detection of pathology.

Related Links:
Boston University

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Powered Echocardiography Imaging/Ultrasound Table
Powered Echo
New
CT Detector
PURE INSIGHT
New
Portable X-ray Unit
AJEX130HN

Print article

Channels

Ultrasound

view channel
Image: An example of a conventional ultrasound B-scan showing a suspicious breast lesion (left image) and with the new H-scan analysis showing the possibly malignant mass in color (right image) (Photo courtesy of Jihye Baek)

New Ultrasound Technologies Improve Diagnosis for Cancer, Liver Disease and Other Pathologies

Several diseases, including some cancers, can remain hidden or difficult to detect using traditional medical imaging. However, new technologies developed by researchers may soon enhance ultrasound's effectiveness... Read more

Nuclear Medicine

view channel
Image: A new biomarker makes it easier to distinguish between Alzheimer’s and primary tauopathy (Photo courtesy of Shutterstock)

Diagnostic Algorithm Distinguishes Between Alzheimer’s and Primary Tauopathy Using PET Scans

Patients often present at university hospitals with diseases so rare and specific that they are scarcely recognized by physicians in private practice. Primary 4-repeat tauopathies are a notable example.... Read more

General/Advanced Imaging

view channel
Image: The AI tool predicts stroke outcomes after arterial clot removal with 78% accuracy (Photo courtesy of Adobe Stock)

AI Tool Accurately Predicts Stroke Outcomes After Arterial Clot Removal Using CTA Scans

In current stroke treatment protocols, advanced imaging techniques, particularly Computed Tomography Angiography (CTA), play a vital role in determining the management strategy for Large Vessel Occlusion (LVO).... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: SONAS is a portable, battery-powered ultrasound device for non-invasive brain perfusion assessment (Photo courtesy of BURL Concepts)

Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging

Ischemic stroke assessment has long been hampered by the limitations of traditional imaging techniques like CT and MRI. These methods are expensive, not always immediately available in emergency situations,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.