We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New MRI Techniques Help Predict Neuro Outcomes

By MedImaging International staff writers
Posted on 23 Oct 2017
Print article
Image: The images show an fMRI scan of a healthy control subject on the left; a scan of a patient after a cardiac arrest with a good functional outcome in the middle; and a cardiac arrest patient with a poor functional outcome on the right (Photo courtesy of RSNA).
Image: The images show an fMRI scan of a healthy control subject on the left; a scan of a patient after a cardiac arrest with a good functional outcome in the middle; and a cardiac arrest patient with a poor functional outcome on the right (Photo courtesy of RSNA).
Researchers are using advanced Magnetic Resonance Imaging (MRI) techniques to help predict the neurological outcomes of patients that survive a cardiac arrest.

The researchers used MRI-Diffusion Tensor Imaging (DTI) and resting-state functional MRI (fMRI) to show the large-scale functional integration, or connectome, of the brain.

The study included 46 patients who had suffered a cardiac arrest, and were in a coma, and was published online in the October 2017 issue of the journal Radiology by researchers from Johns Hopkins University School of Medicine (Baltimore, MD).

The researchers assessed the functional connectivity of the brain of the patients and found that brain connectivity measurements could predict the long-term recovery potential of patients with brain damage related to a cardiac arrest they had experienced. The researchers concluded that by carrying out MRI-based measurements of the functional connections in the brain they could better predict long-term recovery for those patients who suffered from a neurological disability following a cardiac arrest. The results also showed that connectivity measures could provide early markers of long-term recovery potential in such patients.

Lead author of the study, Robert D. Stevens, MD, said, “This is game-changing information about what happens in the brains of people who suffer cardiac arrest. We realize that network architectures can be selectively disrupted in this setting. Anti-correlation was preserved in patients who recovered and abolished in those who did not. Relative preservation of this anti-correlation was the most robust signal of a favorable outcome. Connectome studies have the potential to change not only outcome prediction, but to guide treatment as well."

Related Links:
Johns Hopkins University School of Medicine

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Dose Area Product Meter
VacuDAP
Digital Radiography Acquisition Software
VXvue with PureImpact
New
Portable Radiology System
DRAGON ELITE & CLASSIC

Print article

Channels

Ultrasound

view channel
Image: Structure of the proposed transparent ultrasound transducer and its optical transmittance (Photo courtesy of POSTECH)

Ultrasensitive Broadband Transparent Ultrasound Transducer Enhances Medical Diagnosis

The ultrasound-photoacoustic dual-modal imaging system combines molecular imaging contrast with ultrasound imaging. It can display molecular and structural details inside the body in real time without... Read more

Nuclear Medicine

view channel
Image: PET/CT of a 60-year-old male patient with clinical suspicion of lung cancer (Photo courtesy of EJNMMI Physics)

Early 30-Minute Dynamic FDG-PET Acquisition Could Halve Lung Scan Times

F-18 FDG-PET scans are a way to look inside the body using a special dye, and these scans can be either static or dynamic. Static scans happen 60 minutes after the dye is administered into the body, showing... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The acquisition will expand IBA’s medical imaging quality assurance offering (Photo courtesy of Radcal)

IBA Acquires Radcal to Expand Medical Imaging Quality Assurance Offering

Ion Beam Applications S.A. (IBA, Louvain-La-Neuve, Belgium), the global leader in particle accelerator technology and a world-leading provider of dosimetry and quality assurance (QA) solutions, has entered... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.