We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




RT Intraoperative MRI Imaging Improves Stem Cell Therapy for Parkinson's Disease

By MedImaging International staff writers
Posted on 19 Oct 2016
Image: The details of the technique used for MRI-guided transplantation of neural stem cells into the Parkinsonian brain (Photo courtesy of Vermilyea SC).
Image: The details of the technique used for MRI-guided transplantation of neural stem cells into the Parkinsonian brain (Photo courtesy of Vermilyea SC).
Researchers have demonstrated that Real-Time Intraoperative Magnetic Resonance Imaging (RT-IMRI) can be used for guiding and monitoring stem cell therapy for Parkinson's disease.

The research subjects were primates modeled with Parkinson's disease. The researchers used RT-IMRI to guide the transplantation of iPSC (induced Pluripotent Stem Cell) derived neurons into the brains of the primates and found that the technique improved cell survival, and provided improved visualization and monitoring during the procedure.

The researchers from the Preclinical Parkinson's Research Program Center, University of Wisconsin-Madison, (Madison, WI, USA) will publish the results of their study in the upcoming October 2016, issue of the journal Cell Transplantation.

The results showed that the RT-IMRI system could be used for intracerebral targeting and delivery of iPSC-derived neuroprogenitors. The technique enables clinicians to monitor cell uploading and infusion. The researchers also found that the cells that had been transplanted and grafted had survived well in the test animals.

Dr. Paul R. Sanberg, distinguished professor, University of South Florida (Tampa, FL, USA), said, "Cell therapy is the cornerstone of regenerative medicine for neurodegenerative disease. With the advent of iPSCs, the field has made significant advances. The current study expounds upon those advances by addressing logistical concerns regarding cell administration and tracking. This method has wide applicability and may be relevant for not only Parkinson's disease, but other neurodegenerative conditions as well."

Related Links:
Preclinical Parkinson's Research Program Center
New
Post-Processing Imaging System
DynaCAD Prostate
3T MRI Scanner
MAGNETOM Cima.X
New
Breast Localization System
MAMMOREP LOOP
Portable Color Doppler Ultrasound Scanner
DCU10

Channels

Ultrasound

view channel
Image: The new implantable device for chronic pain management is small and flexible (Photo courtesy of The Zhou Lab at USC)

Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery

Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more

Nuclear Medicine

view channel
Image: The diagnostic tool could improve diagnosis and treatment decisions for patients with chronic lung infections (Photo courtesy of SNMMI)

Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections

Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.