We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Superconducting MRI Coil Offers Higher Resolution and Shorter Scan Times

By MedImaging International staff writers
Posted on 02 Aug 2016
Print article
Image: Scientist Jarek Wosik has developed a high-temperature superconducting coil that allows MRI scanners to produce higher resolution images or acquire images in a shorter time than when using conventional coils (Photo courtesy of the University of Houston).
Image: Scientist Jarek Wosik has developed a high-temperature superconducting coil that allows MRI scanners to produce higher resolution images or acquire images in a shorter time than when using conventional coils (Photo courtesy of the University of Houston).
Researchers in the U.S. have developed a new high-temperature superconducting cryo-coil for Magnetic Resonance Imaging (MRI) scanners that increases the Signal-to-Noise Ratio (SNR) and is more sensitive compared to conventional coils.

The new coil technology was developed by a multidisciplinary team of researchers and can reveal brain structures that conventional MRI coils cannot. Initial testing was performed on rat brains for imaging of neurological disorders.

Researchers from the University of Houston (UH; Houston, TX, USA) developed the 7-T high-temperature superconducting MRI Cryo-probe, with which MRI scanners can produce higher-resolution images or acquire images faster than with conventional coils. Currently the coil is optimized for experiments using brain tissue samples, or on live animals. According to researchers they were able to demonstrate an isotropic resolution of 34 microns during imaging of rat brains.

Research team leader from the University of Houston, Jarek Wosik, said, "Research in animal models yields critical information to improve diagnosis and treatment of human diseases and disorders. This work also has the potential to clearly benefit clinical MRI, both through high quality imaging and through shortening the time patients are in the scanner. Compared to corresponding standard room temperature MRI coils, the performance of the cooled normal metal and/or the high-temperature superconducting receiver coils lead either to an increase in imaging resolution and its quality, or to a very significant reduction in total scan time.

Related Links:
University of Houston


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Ultrasound System
P20 Elite
Color Doppler Ultrasound System
DRE Crystal 4PX
Ultrasound Doppler System
Doppler BT-200

Print article
Radcal

Channels

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.