Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




3-D MRI DTI May Help Detect Muscle Injuries that Occur as Result of Long-Distance Running

By MedImaging International staff writers
Posted on 17 Jun 2015
Image: The posterior view of segmented muscles and fiber tractography (Photo courtesy of Radiology 2015; 274;2;548-562).
Image: The posterior view of segmented muscles and fiber tractography (Photo courtesy of Radiology 2015; 274;2;548-562).
The results of a study published in the February, 2015, issue of Radiology indicate that Magnetic Resonance Imaging (MRI) Diffusion-Tensor Imaging (DTI) could be used for the prognosis and treatment of sports injuries in athletes.

The researchers obtained DTI Three-dimensional (3-D) measurements of the upper leg from the hip to the knee, including the hamstring and other susceptible muscles, in a single imaging session. The technique revealed changes that qualitative T2-weighted MR imaging with fat suppression was not able to show, and could be used to help clinicians detect long-term changes in in the upper leg from sports-related muscle injuries.

The researchers evaluated five male amateur long-distance runners using a 3-T MR examination of both upper legs at three points in time. The exams took place one week before, two days after, and three weeks after the runners took part in a marathon. A musculoskeletal radiologist used three grades to evaluate the level of muscle injury using T2-weighted images with fat suppression. The radiologist noted the specific muscle and its location, the craniocaudal, and axial length of the hemorrhage and/or edema, and manually segmented six muscles in both upper legs based on T1- and T2-weighted images.

Lead author of the study, Martijn Froeling, PhD, at the University Medical Center Utrecht (Utrecht, Netherlands), said, "Our method revealed subtle changes in DTI-derived parameters of muscle that occurred during marathon running, which were still measurable after three weeks. The elevated mean diffusivity, which was still present after three weeks, might be related to the natural disease course of fatigue-induced muscle disorders. These findings might be related to a high risk for injury in biceps femoris and semitendinosus muscles during long-distance running. DTI may eventually allow for design of personalized rehabilitation programs. The method could be especially useful in longitudinally evaluating athletes after muscle injury and could give a better prognosis when affected muscle function is restored."

Related Links:

University Medical Center Utrecht 


Mammography System (Analog)
MAM VENUS
Ultrasound Needle Guidance System
SonoSite L25
Ultrasound Table
Women’s Ultrasound EA Table
Breast Localization System
MAMMOREP LOOP

Channels

Nuclear Medicine

view channel
Image: LHSCRI scientist Dr. Glenn Bauman stands in front of the PET scanner (Photo courtesy of LHSCRI)

New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer

Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.