We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




e-Incubator Technology Provides Real-Time Imaging of Bioengineered Tissues in a Controlled Unit

By MedImaging International staff writers
Posted on 24 Nov 2014
A new e-incubator, an innovative miniature incubator that is compatible with magnetic resonance imaging (MRI), enables scientists to grow tissue-engineered constructs under a controlled setting and to study their growth and development in real time without risk of contamination or damage.

Offering the potential to test engineered tissues before human transplantation increases the success rate of implantation, and accelerates the translation of tissue engineering methods from the lab to the clinic, the novel e-incubator was described in the journal Tissue Engineering, Part C.

Shadi Othman, PhD, Karin Wartella, PhD, Vahid Khalilzad Sharghi, and Huihui Xu, PhD, from the University of Nebraska-Lincoln (USA), presented their findings of a validation study using the device to culture tissue-engineered bone constructs for four weeks. The e-incubator is a standalone unit that automatically detects and regulates internal conditions such as temperature, carbon dioxide levels, and pH via a microcontroller. It performs media exchange to feed the cultures and remove waste products. The current design is compatible with MRI to monitor the constructs without removing them from the incubator. With proper adjustments, compatibility with other imaging technologies including computed tomography [CT] and optical imaging is also possible.”

“Calibratable, hands-free tissue development environments are becoming increasingly important for the engineering of implantable tissues,” said Tissue Engineering co-editor-in-chief Peter C. Johnson, MD, vice president, research and development, Avery Dennison Medical Solutions (Chicago, IL, USA), and president and CEO, Scintellix, LLC (Raleigh, NC, USA). “In this new development, noninvasive imaging modalities are added to the spectrum of sensing and environmental capabilities that heretofore have included temperature, humidity, light, physical force, and electromagnetism. This represents a solid advance for the field.”

Related Links:

University of Nebraska-Lincoln


Silver Member
X-Ray QA Device
Accu-Gold+ Touch Pro
Ultrasound Table
Women’s Ultrasound EA Table
Breast Localization System
MAMMOREP LOOP
Digital Color Doppler Ultrasound System
MS22Plus

Channels

Nuclear Medicine

view channel
Image: This artistic representation illustrates how the drug candidate NECT-224 works in the human body (Photo courtesy of HZDR/A. Gruetzner)

Radiopharmaceutical Molecule Marker to Improve Choice of Bladder Cancer Therapies

Targeted cancer therapies only work when tumor cells express the specific molecular structures they are designed to attack. In urothelial carcinoma, a common form of bladder cancer, the cell surface protein... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.