We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
IBA-Radcal

Download Mobile App




e-Incubator Technology Provides Real-Time Imaging of Bioengineered Tissues in a Controlled Unit

By MedImaging International staff writers
Posted on 24 Nov 2014
A new e-incubator, an innovative miniature incubator that is compatible with magnetic resonance imaging (MRI), enables scientists to grow tissue-engineered constructs under a controlled setting and to study their growth and development in real time without risk of contamination or damage.

Offering the potential to test engineered tissues before human transplantation increases the success rate of implantation, and accelerates the translation of tissue engineering methods from the lab to the clinic, the novel e-incubator was described in the journal Tissue Engineering, Part C.

Shadi Othman, PhD, Karin Wartella, PhD, Vahid Khalilzad Sharghi, and Huihui Xu, PhD, from the University of Nebraska-Lincoln (USA), presented their findings of a validation study using the device to culture tissue-engineered bone constructs for four weeks. The e-incubator is a standalone unit that automatically detects and regulates internal conditions such as temperature, carbon dioxide levels, and pH via a microcontroller. It performs media exchange to feed the cultures and remove waste products. The current design is compatible with MRI to monitor the constructs without removing them from the incubator. With proper adjustments, compatibility with other imaging technologies including computed tomography [CT] and optical imaging is also possible.”

“Calibratable, hands-free tissue development environments are becoming increasingly important for the engineering of implantable tissues,” said Tissue Engineering co-editor-in-chief Peter C. Johnson, MD, vice president, research and development, Avery Dennison Medical Solutions (Chicago, IL, USA), and president and CEO, Scintellix, LLC (Raleigh, NC, USA). “In this new development, noninvasive imaging modalities are added to the spectrum of sensing and environmental capabilities that heretofore have included temperature, humidity, light, physical force, and electromagnetism. This represents a solid advance for the field.”

Related Links:

University of Nebraska-Lincoln


Ultrasonic Pocket Doppler
SD1
Diagnostic Ultrasound System
DC-80A
Post-Processing Imaging System
DynaCAD Prostate
Ultrasound Needle Guidance System
SonoSite L25

Channels

Nuclear Medicine

view channel
Image: CXCR4-targeted PET imaging reveals hidden inflammatory activity (Diekmann, J. et al., J Nucl Med (2025). DOI: 10.2967/jnumed.125.270807)

PET Imaging of Inflammation Predicts Recovery and Guides Therapy After Heart Attack

Acute myocardial infarction can trigger lasting heart damage, yet clinicians still lack reliable tools to identify which patients will regain function and which may develop heart failure.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.