Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Newly Developed Compound Evaluated as a Delivery Vehicle to Image and Kill Brain Tumors

By MedImaging International staff writers
Posted on 25 Aug 2011
A single compound with dual function--the ability to deliver a diagnostic and therapeutic agent--may soon be used to enhance the diagnosis, imaging, and treatment of brain tumors.

Glioblastomas are the most common and aggressive brain tumor in humans, with a high rate of relapse. More...
These tumor cells frequently extend beyond the well-defined tumor margins making it extremely difficult for clinicians and radiologists to visualize with current imaging techniques. Researchers have been investigating enhanced approaches to attack these cells in order to possibly delay or prevent brain tumor relapse.

In a study published in the August 2011 issue of the journal Radiology, the research team, led by Panos Fatouros, PhD, a former professor and chair of the division of radiation physics and Biology in the Virginia Commonwealth University (VCU) School of Medicine (Richmond, USA), who retired in 2010, demonstrated that a nanoparticle containing a magnetic resonance imaging (MRI) diagnostic agent can effectively be imaged within the brain tumor and provide radiation therapy in an animal model.

The nanoparticle filled with gadolinium, a sensitive MRI contrast agent for imaging, and combined with radioactive lutetium 177 [177Lu] to deliver brachytherapy, is known as a theranostic agent--a single compound capable of delivering simultaneously effective treatment and imaging. The lutetium 177 is attached to the outside of the carbon cage of the nanoparticle. “We believe the clustering properties of this nanoplatform prolong its retention within the tumor, thereby allowing a higher radiation dose to be delivered locally,” said Michael Shultz, PhD, a research fellow in Dr. Fatouros’ lab in the department of radiology in the VCU School of Medicine.

“This theranostic agent could potentially provide critical data about tumor response to therapy by means of longitudinal imaging without further contrast administration,” said Dr. Fatouros.

A nanoparticle called a functionalized metallofullerene (fMF), also known as a “buckyball,” served as the basis of this work and was created by study collaborator, Harry Dorn, PhD, a chemistry professor at the Virginia Polytechnic Institute and State University (Virginia Tech; Blacksburg, USA), and his team. In 1999, Dr. Dorn and his colleagues were able to encapsulate rare earth metals in the hollow interior of these nanoparticles that can easily be recognized by MRI techniques. “Although this is a limited animal study, it shows great promise and hopefully this metallofullerene platform will be extended to humans,” said Dr. Dorn.

Related Links:
Virginia Commonwealth University School of Medicine
Virginia Polytechnic Institute and State University




Diagnostic Ultrasound System
DC-80A
Medical Radiographic X-Ray Machine
TR30N HF
Adjustable Mobile Barrier
M-458
Pocket Fetal Doppler
CONTEC10C/CL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Nuclear Medicine

view channel
Image: LHSCRI scientist Dr. Glenn Bauman stands in front of the PET scanner (Photo courtesy of LHSCRI)

New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer

Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.