We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Project to Expand Access of MRI Systems to Underdeveloped Regions

By MedImaging International staff writers
Posted on 25 Feb 2010
Print article
A project is ongoing to expand access to imaging technology to regions without access to advanced imaging systems.

Working to expand access of state-of-the-art medical imaging to underdeveloped regions around the world, GE Global Research (Niskayuna, NY, USA), the technology development arm for the General Electric Co. (Fairfield , CT, USA), has been awarded a four-year, US$3.27 million award from the U.S. National Institutes of Health (NIH; Bethesda, MD, USA) to develop new magnet technology that will make magnetic resonance imaging (MRI), systems less expensive and easier to site.

In MRI, the magnet is the key part of the system that enables detailed images of tissue inside the body to help physicians and clinicians make critical diagnoses. To obtain images with such high resolution and quality, the magnet must be kept at super cool temperatures of -269 oC. That is only a few degrees above absolute zero and as cold as outer space. Cryogenic liquids, or liquids at ultra-low temperatures, are used today to keep the magnet this cool.

Because cryogenic liquids are used, special venting and other room specifications must be met that can make MRI systems more expensive and difficult to site. As part of this project, GE researchers are developing a cryogen-free magnet that would considerably reduce these costs and siting requirements.

"The use of cryogenic liquids limits where MRI systems can be placed today, and we want to change that so more people around the world can have access to this vital diagnostic imaging technology,” said Minfeng Xu, lead investigator on the MRI magnet project from GE Global Research. "By developing a cryogen-free magnet, we can reduce the overall size, cost, and siting requirements of new MRI systems and make them easier to site in areas where the infrastructure is not as well developed.”

The magnet GE researchers are developing will be smaller and require less wire to support an MRI scanner. The reduction in wire would also help reduce the overall cost of an MRI system. "The whole idea is to create a more highly mobile, less costly MRI system platform that delivers the same high resolution and quality of imaging for patients,” added Kathleen Amm, lab manager, electromagnetics and superconductivity.

A key strength of MRI scanners is the ability to differentiate various soft tissues inside the body. Clinicians typically use them for brain, cardiovascular, and musculoskeletal imaging as well as for imaging of the body's major organs.

The development of a lower-cost mobile MRI platform would help support GE's healthymagination vision by expanding MRI use into underserved communities worldwide. Healthymagination represents GE's focus on driving new technologies and products that reduce costs, improve quality and increase access to healthcare.

The chief objective of the program is to develop technologies that enable low-cost whole-body MRI systems that are easier to site and maintain the highest degree of image quality. With the successful development of the proposed magnet technologies, MRI systems can be realized with cost and sitability requirements comparable to today's low-cost permanent magnet systems (magnetic field of 0.2-0.35T), but with a high magnetic field (1.5-3.0T) and excellent image quality comparable to existing mainstream and premium superconducting systems.

Related Links:
GE Global Research
Healthymagination


Portable X-ray Unit
AJEX140H
New
Medical Radiographic X-Ray Machine
TR30N HF
Digital Radiographic System
OMNERA 300M
Wall Fixtures
MRI SERIES

Print article

Channels

Radiography

view channel
Image: The new machine algorithm can identify cardiovascular risk at the click of a button (Photo courtesy of Adobe Stock)

Machine Learning Algorithm Identifies Cardiovascular Risk from Routine Bone Density Scans

A new study published in the Journal of Bone and Mineral Research reveals that an automated machine learning program can predict the risk of cardiovascular events and falls or fractures by analyzing bone... Read more

Nuclear Medicine

view channel
Image: The prostate cancer imaging study aims to reduce the need for biopsies (Photo courtesy of Shutterstock)

New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer

Prostate cancer is the second leading cause of cancer-related death among men in the United States. However, the majority of older men diagnosed with prostate cancer have slow-growing, low-risk forms of... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.