We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

World's First Sensor Detects Errors in MRI Scans Using Laser Light and Gas

By MedImaging International staff writers
Posted on 03 May 2024
Print article
Image: The MRI sensor or magnetometer uses laserlight and gas to measure magnetic fields. (Photo courtesy of University of Copenhagen)
Image: The MRI sensor or magnetometer uses laserlight and gas to measure magnetic fields. (Photo courtesy of University of Copenhagen)

MRI scanners are daily tools for doctors and healthcare professionals, providing unparalleled 3D imaging of the brain, vital organs, and soft tissues, far surpassing other imaging technologies in quality. Despite their critical role in healthcare, these machines are not without faults. The strong magnetic fields within MRI scanners are prone to fluctuations, causing scan errors and disturbances that necessitate regular calibration. This necessity limits the use of advanced scanning methods, such as spiral sequences, which could significantly reduce the time required for diagnosing conditions like blood clots, sclerosis, and tumors. Spiral sequences could also advance MRI research, particularly in studying brain diseases, but the instability of the magnetic field currently makes such scans unfeasible.

Theoretically, these issues could be addressed by a sensor that monitors and maps magnetic field changes, allowing for computer corrections of the imaging errors. However, practically implementing this has been challenging, as traditional sensors that could perform this task disrupt the magnetic field due to their electrical nature and metal components. A breakthrough has now been achieved by a researcher at the University of Copenhagen (Copenhagen, Denmark), who has invented a new type of sensor. This sensor operates using laser light within fiber cables and a small glass container filled with gas, proving effective in prototype tests.

MRI scanners function by generating a powerful magnetic field that aligns protons in the body’s water, carbohydrates, and proteins. These protons are then disturbed by pulsed radio waves, causing them to spin out of alignment. As they realign with the magnetic field, they emit radio waves that are captured to create real-time 3D images of the targeted tissues. The new sensor precisely maps disturbances in the magnetic field, identifying the location and magnitude of these disruptions. This innovative development could soon allow for the correction of distorted MRI images, ensuring that they are accurate and reliable based on the sensor’s data, thus enhancing the effectiveness and reliability of MRI diagnostics.

"First we demonstrated that it was theoretically possible, and now we have proven that it can be done in practice," said Hans Stærkind, the main architect behind the sensor and device that comes with it. “In fact, we now have a prototype that can basically make the measurements needed without disturbing the MRI scanner. It needs to be developed more and fine-tuned, but has the potential to make MRI scans cheaper, better and faster – although not necessarily all three at once.”

Related Links:
University of Copenhagen

Print article



view channel
Image: Physicians using the Zenition 90 Motorized mobile X-ray system (Photo courtesy of Royal Philips)

High-Powered Motorized Mobile C-Arm Delivers State-Of-The-Art Images for Challenging Procedures

During complex surgical procedures, clinicians depend on surgical imaging systems as they navigate challenging anatomy to quickly visualize small anatomical details while minimizing X-ray exposure.... Read more


view channel
Image: The device creates microbubbles that temporarily disrupt the BBB, permitting the entry of immunotherapy into the brain (Photo courtesy of Northwestern)

Ultrasound Technology Breaks Blood-Brain Barrier for Glioblastoma Treatment

Despite extensive molecular studies, the outlook for patients diagnosed with the aggressive brain cancer known as glioblastoma (GBM) continues to be poor. This is partly due to the blood-brain barrier... Read more

Nuclear Medicine

view channel
Image: 68Ga-NC-BCH whole-body PET imaging rapidly targets an important gastrointestinal cancer biomarker in lesions in GI cancer patients (Photo courtesy of Qi, Guo, et al.; doi.org/10.2967/jnumed.123.267110)

New PET Radiotracer Enables Same-Day Imaging of Key Gastrointestinal Cancer Biomarker

Gastrointestinal cancers rank among the most prevalent cancers worldwide, contributing to over a quarter of all cancer cases and over one-third of cancer-related deaths annually. The initial symptoms of... Read more

General/Advanced Imaging

view channel
Image: The denoised image is less noisy and the defect is more detectable and visually clearer with DEMIST (Photo courtesy of Abhinav Jha/WUSTL)

Artificial Intelligence Tool Enhances Usability of Medical Images

Doctors use myocardial perfusion imaging (MPI) single-photon emission computed tomography (SPECT) images to evaluate blood flow to the heart muscle. To capture these images, patients are administered a... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.