We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Image Reconstruction Technique Combines Data Science with ML for Faster MRIs

By MedImaging International staff writers
Posted on 15 Sep 2022
Image: New research closes the gap between traditional and deep learning methods (Photo courtesy of University of Minnesota)
Image: New research closes the gap between traditional and deep learning methods (Photo courtesy of University of Minnesota)

For the last decade or so, scientists have been making Magnetic Resonance Imaging (MRI) faster using a technique called compressed sensing, which uses the idea that images can be compressed into smaller sizes, akin to zipping a .jpeg on a computer. More recently, researchers have been looking into using deep learning, a type of machine learning, to speed up MRI image reconstruction. Instead of capturing every frequency during the MRI procedure, this process skips over frequencies and uses a trained machine learning algorithm to predict the results and fill in those gaps.

Many studies have shown deep learning to be better than traditional compressed sensing by a large margin. However, there are some concerns with using deep learning - for example, having insufficient training data could create a bias in the algorithm that might cause it to misinterpret the MRI results. Now, using a combination of modern data science tools and machine learning ideas, researchers have found a way to fine-tune the traditional compressing method to make it nearly as high-quality as deep learning. This finding by scientists and engineers at the University of Minnesota (Minneapolis, MN, USA) provides a new research direction for the field of MRI reconstruction. It can improve the performance of traditional MRI reconstruction techniques, allowing for faster MRIs to improve healthcare.

“MRIs take a long time because you’re acquiring the data in a sequential manner. You have to fill up the frequency space of your image in a successive manner,” explained Mehmet Akcakaya, the Jim and Sara Anderson Associate Professor in the University of Minnesota Department of Electrical and Computer Engineering. “We want to make MRIs faster so that patients are there for shorter times and so that we can increase the efficiency in the healthcare system.”

“What we’re saying is that there’s a lot of hype surrounding deep learning in MRIs, but maybe that gap between new and traditional methods isn’t as big as previously reported,” Akcakaya said. “We found that if you tune the classical methods, they can perform very well. So, maybe we should go back and look at the classical methods and see if we can get better results. There is a lot of great research surrounding deep learning as well, but we’re trying to look at both sides of the picture to see where we can find the best performance, theoretical guarantees, and stability.”

Related Links:
University of Minnesota 

3T MRI Scanner
MAGNETOM Cima.X
Biopsy Software
Affirm® Contrast
Digital Radiographic System
OMNERA 300M
Ultra-Flat DR Detector
meX+1717SCC

Channels

Ultrasound

view channel
Image: The new implantable device for chronic pain management is small and flexible (Photo courtesy of The Zhou Lab at USC)

Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery

Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more

Nuclear Medicine

view channel
Image: The diagnostic tool could improve diagnosis and treatment decisions for patients with chronic lung infections (Photo courtesy of SNMMI)

Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections

Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.