We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Diagnostic Tool Analyzes CT Scans to Spot Prostate Cancer Before Patients Have Symptoms

By MedImaging International staff writers
Posted on 13 Jul 2021
Print article
Image: AI Diagnostic Tool Analyzes CT Scans to Spot Prostate Cancer Before Patients Have Symptoms (Photo courtesy of RMIT University)
Image: AI Diagnostic Tool Analyzes CT Scans to Spot Prostate Cancer Before Patients Have Symptoms (Photo courtesy of RMIT University)
Researchers have developed a diagnostic tool that can spot prostate cancer before patients have any symptoms, using artificial intelligence to analyze Computed Tomography (CT) scans in just seconds.

Researchers at RMIT University (Melbourne, Australia), in collaboration with clinicians at St Vincent’s Hospital Melbourne (Australia), have developed an artificial intelligence (AI) program that could catch the prostate cancer earlier, allowing for incidental detection through routine CT scans. The technology works by analyzing CT scans for tell-tale signs of prostate cancer, something even a well-trained human eye struggles to do.

Prostate cancer is the most diagnosed cancer and is slow growing, usually detected incidentally due to which it can go undiagnosed for years. It was responsible for an estimated 12% of male cancer deaths in 2020. Early detection is the key to successful treatment but men often dodge the doctor, avoiding diagnosis tests until it’s too late. CT imaging is not suitable for regular cancer screening because of the high radiation doses involved. CT scans were great for detecting bone and joint problems but even radiologists struggled to spot prostate cancers on the images. The new AI solution can be used to run a cancer check whenever men have their abdomen or pelvis scanned for other issues.

For the study, the researchers studied CT scans of asymptomatic patients, with and without prostate cancer. The team trained the AI software to look for features of disease in a variety of scans and where exactly to look for them, avoiding the need to manually crop the images. The AI performed better than radiologists who viewed the same images, detecting cancerous growths in just seconds. What’s more, the AI improved with each scan, learning and adapting to read images from different machines to spot even the smallest irregularities. The technology can be applied at scale, potentially integrating with a variety of diagnostic imaging equipment like MRI and DEXA machines - pending further research.

“We’ve trained our software to see what the human eye can’t, with the aim of spotting prostate cancer through incidental detection,” said RMIT’s Dr. Ruwan Tennakoon. “It’s like training a sniffer dog – we can teach the AI to see things that we can't with our own eyes, in the same way a dog can smell things human noses can’t.”

Related Links:
RMIT University
St Vincent’s Hospital Melbourne


New
Leg Wraps
Leg Wraps
Computed Tomography System
Aquilion ONE / INSIGHT Edition
New
Digital Intelligent Ferromagnetic Detector
Digital Ferromagnetic Detector
Portable Color Doppler Ultrasound System
S5000

Print article

Channels

MRI

view channel
Image: An AI tool has shown tremendous promise for predicting relapse of pediatric brain cancer (Photo courtesy of 123RF)

AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans

Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more

Nuclear Medicine

view channel
Image: In vivo imaging of U-87 MG xenograft model with varying mass doses of 89Zr-labeled KLG-3 or isotype control (Photo courtesy of L Gajecki et al.; doi.org/10.2967/jnumed.124.268762)

Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors

Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.