We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Researchers Use AI to Detect Wrist Fractures

By MedImaging International staff writers
Posted on 27 Apr 2021
Illustration
Illustration
An automated system that uses artificial intelligence (AI) is effective at detecting a common type of wrist fracture on X-rays, according to a study.

Researchers at the Jeroen Bosch Hospital ('s-Hertogenbosch, The Netherlands) and Jheronimus Academy of Data Science ('s-Hertogenbosch, The Netherlands) who developed the AI-derived algorithm said that it could help speed diagnosis and allow earlier treatment.

Scaphoid fractures are injuries to one of the small bones of the wrist that typically occur when people try to break a fall with their hands. They comprise up to 7% of all skeletal fractures. Prompt diagnosis is important, as the fracture may fail to heal properly if untreated, leading to a host of problems like arthritis and even loss of function. Conventional X-ray is the imaging technique of choice for diagnosing scaphoid fractures, but it is often limited by overlap of the scaphoid with the surrounding bones of the wrist. Variations in wrist positioning and X-ray technique can also limit the visibility of fractures.

To overcome this, the researchers studied a system that could aid radiologists in detecting these common fractures. The system is based on deep learning with a convolutional neural network, a sophisticated type of AI that is capable of discerning subtle patterns in images beyond the capabilities of the human eye. While previous research has found that a convolutional neural network was inferior to human observers at identifying scaphoid fractures on X-rays, the new study used larger datasets and further algorithm refinements to improve detection. It also employed class activation maps, which are AI tools that help users understand what region of the image is influencing the network’s predictions. The researchers used thousands of conventional X-rays of the hand, wrist and scaphoid to develop the system.

They tested it on a dataset of 190 X-rays and compared its performance to that of 11 radiologists. The system had a sensitivity of 78% for detecting fractures with a positive predictive value of 83%, which refers to the likelihood that patients the AI identifies as having a fracture really do have one. Analysis showed that the system performed comparably to the 11 radiologists. The class activation maps were found to overlap with fracture lines in the scaphoid, suggesting they could be used for localizing potential fractures. The researchers plan to expand the scaphoid fracture detection system so that it can combine multiple X-ray views for its predictions. They are also conducting an experimental study in which radiologists are asked to identify scaphoid fractures on X-rays with and without the aid of the fracture detection system. The researchers hope to extend the system to fracture detection in other bone structures.

The system has significant potential in clinical use as it could reduce the incidence and costs of additional imaging exams and unnecessary therapy, speed up diagnosis and allow earlier treatment. The system may be able to assist residents, radiologists or other physicians by acting either as a first or second reader, or as a triage tool that helps prioritize worklists, potentially reducing the risk of missing a fracture. Such assistance could prevent delayed therapy and reduce complications that may lead to a subpar clinical outcome, according to the researchers.

“The convolutional neural network may also reduce unnecessary wrist immobilization, performed out of precaution, in more than half of the patients with clinical suspicion for having a scaphoid fracture,” said study lead author Nils Hendrix.

Related Links:
Jeroen Bosch Hospital
Jheronimus Academy of Data Science


X-ray Diagnostic System
FDX Visionary-A
3T MRI Scanner
MAGNETOM Cima.X
Pocket Fetal Doppler
CONTEC10C/CL
New
Breast Localization System
MAMMOREP LOOP

Channels

Ultrasound

view channel
Image: The new implantable device for chronic pain management is small and flexible (Photo courtesy of The Zhou Lab at USC)

Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery

Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more

Nuclear Medicine

view channel
Image: The diagnostic tool could improve diagnosis and treatment decisions for patients with chronic lung infections (Photo courtesy of SNMMI)

Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections

Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.