We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




World’s First AI-Driven Mammogram Measures of Breast Cancer Risk Could Revolutionize Screening

By MedImaging International staff writers
Posted on 08 Jan 2021
Print article
Illustration
Illustration
World-first techniques for predicting breast cancer risk from mammograms that were developed using artificial intelligence (AI) could revolutionize breast screening by allowing it to be tailored to women at minimal extra cost.

A study led by The University of Melbourne (Melbourne, Australia) found two new mammogram-based measures of risk. When these measures are combined, they are more effective in stratifying women in terms of their risk of breast cancer than breast density and all the known genetic risk factors. Researchers say if successfully adopted, their new measures could substantially improve screening, make it more effective in reducing mortality and less stressful for women, and therefore encourage more to be screened. They could also help address the problem of dense breasts.

Since the late 1970s, scientists have known that women with denser breasts, which shows up on a mammogram as having more white or bright regions, are more likely to be diagnosed with breast cancer and to have it missed at screening. Collaborating with Cancer Council Victoria and BreastScreen Victoria, University of Melbourne researchers were the first to study other ways of investigating breast cancer risk using mammograms. Using computer programs to analyze mammogram images of large numbers of women with and without breast cancer, they found two new measures for extracting risk information. Cirrocumulus is based on the image’s brightest areas and Cirrus on its texture.

First, they used a semi-automated computer method to measure density at the usual, and successively higher levels of brightness to create Cirrocumulus. They then used AI and high-speed computing to learn about new aspects of the texture (not brightness) of a mammogram that predict breast cancer risk and created Cirrus. When their new Cirrocumulus and Cirrus measures were combined, they substantially improved risk prediction beyond that of all other known risk factors. In terms of understanding how much women differ in their risks of breast cancer, these developments could be the most significant since the breast cancer genes BRCA1 and BRCA2 were discovered 25 years ago, according to the researchers.

“These measures could revolutionize mammographic screening at little extra cost, as they simply use computer programs,” said lead researcher and University of Melbourne Professor John Hopper.

“Using AI developments to assess risk and personalize screening could deliver significant gains in the fight against breast cancer,” added adjunct Associate Professor Helen Frazer, Clinical Director of St. Vincent’s BreastScreen Melbourne.

Related Links:
The University of Melbourne

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Silver Member
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers
New
Ultrasound Software
UltraExtend NX
New
Computed Tomography (CT) Scanner
Aquilion Serve SP

Print article

Channels

Radiography

view channel
:	Image: The AI model could be a valuable adjunct to human radiologists in breast cancer diagnoses and risk prediction (Photo courtesy of 123RF)

AI Model Predicts 5-Year Breast Cancer Risk from Mammograms

Approximately 13% of U.S. women, or one in every eight, are predicted to develop invasive breast cancer over their lifetime, with 1 in 39 women (3%) succumbing to the illness, according to the American... Read more

Nuclear Medicine

view channel
Image: The AI system uses scintigraphy imaging for early diagnosis of cardiac amyloidosis (Photo courtesy of 123RF)

AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging

Cardiac amyloidosis, a condition characterized by the buildup of abnormal protein deposits (amyloids) in the heart muscle, severely affects heart function and can lead to heart failure or death without... Read more

General/Advanced Imaging

view channel
Image: The CIARTIC Move self-driving mobile C-arm has received FDA clearance (Photo courtesy of Siemens)

Self-Driving Mobile C-Arm Reduces Imaging Time during Surgery

Intraoperative imaging faces significant challenges due to staff shortages and the high demands placed on surgical teams in the operating room (OR). A common challenge during many OR procedures is the... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.