We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




MIT Researchers Build Machine Learning Model that Quickly Generates Brain Scan Templates to Aid Diagnosis

By MedImaging International staff writers
Posted on 31 Dec 2019
Print article
Image: Brain scan templates of various ages (Photo courtesy of Massachusetts Institute of Technology)
Image: Brain scan templates of various ages (Photo courtesy of Massachusetts Institute of Technology)
A team of researchers from the Massachusetts Institute of Technology (Cambridge, MA, USA) have devised a method that accelerates the process for creating and customizing templates used in medical-image analysis, to guide disease diagnosis.

Medical image analysis is used to crunch datasets of patients’ medical images and capture structural relationships that may indicate the progression of diseases. In many cases, analysis requires use of a common image template, called an “atlas,” that’s an average representation of a given patient population. Atlases serve as a reference for comparison, for example to identify clinically significant changes in brain structures over time. However, building a template is a time-consuming, laborious process, often taking days or weeks to generate, especially when using 3D brain scans. To save time, researchers often download publicly available atlases previously generated by research groups, although these fail to fully capture the diversity of individual datasets or specific subpopulations, such as those with new diseases or from young children. Ultimately, the atlas cannot be smoothly mapped onto outlier images, producing poor results.

The MIT researchers devised an automated machine-learning model that generates “conditional” atlases based on specific patient attributes, such as age, sex, and disease. By leveraging shared information from across an entire dataset, the model can also synthesize atlases from patient subpopulations that may be completely missing in the dataset. The researchers hope clinicians can use the model to build their own atlases quickly from their own, potentially small datasets.

“The world needs more atlases,” says first author Adrian Dalca, a former postdoc in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and now a faculty member in radiology at Harvard Medical School and Massachusetts General Hospital. “Atlases are central to many medical image analyses. This method can build a lot more of them and build conditional ones as well.”

Related Links:
Massachusetts Institute of Technology

Portable X-ray Unit
AJEX140H
Ultra-Flat DR Detector
meX+1717SCC
Wall Fixtures
MRI SERIES
Multi-Use Ultrasound Table
Clinton

Print article

Channels

Radiography

view channel
Image: The new machine algorithm can identify cardiovascular risk at the click of a button (Photo courtesy of Adobe Stock)

Machine Learning Algorithm Identifies Cardiovascular Risk from Routine Bone Density Scans

A new study published in the Journal of Bone and Mineral Research reveals that an automated machine learning program can predict the risk of cardiovascular events and falls or fractures by analyzing bone... Read more

Nuclear Medicine

view channel
Image: The prostate cancer imaging study aims to reduce the need for biopsies (Photo courtesy of Shutterstock)

New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer

Prostate cancer is the second leading cause of cancer-related death among men in the United States. However, the majority of older men diagnosed with prostate cancer have slow-growing, low-risk forms of... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.