We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New AI Tool Could Radically Improve Diagnosis and Treatment of Breast Cancer

By MedImaging International staff writers
Posted on 27 Dec 2019
Print article
Illustration
Illustration
Researchers at the University of Auckland (Auckland, New Zealand) are combining machine learning and state-of-the-art imaging to develop an automated analysis technique that will radically improve the diagnosis and treatment of breast cancer. The researchers received USD 1.05 million in philanthropic funding to advance research in which they have developed biomechanical analysis techniques that automatically merges information from different medical images of the breast. This will provide clinicians with more information about any abnormality, as suspicious lesions and warning signs for cancer can appear differently in the various types of images.

For instance, it can help to co-locate abnormalities such as micro-calcifications – tiny and difficult-to-detect features visible on X-ray mammograms that can indicate early stages of breast cancer – with regions of increased blood supply identified using MRI and which can also indicate tumor growth. Part of the challenge has been identifying the different biomechanical properties of the different types of breast tissues — to account for the individuality of each patient. The team was able to draw on 200 scans provided (with patient permission) by the Auckland District Health Board. The researchers have made enormous progress in developing methods for analysis and mathematical modelling of breast tissue.

“This work is approaching real-time clinical application, which is very exciting in terms of realizing the benefits of advanced computational techniques in improving outcomes for patients,” said Dr. Anthony Doyle, an MRI expert at Auckland City Hospital, who has worked with the team on identifying key clinical challenges that need solving and providing feedback on their research.

Related Links:
University of Auckland

New
Medical Radiographic X-Ray Machine
TR30N HF
Portable Color Doppler Ultrasound System
S5000
Ultrasonic Pocket Doppler
SD1
3T MRI Scanner
MAGNETOM Cima.X

Print article

Channels

MRI

view channel
Image: An AI tool has shown tremendous promise for predicting relapse of pediatric brain cancer (Photo courtesy of 123RF)

AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans

Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more

Nuclear Medicine

view channel
Image: In vivo imaging of U-87 MG xenograft model with varying mass doses of 89Zr-labeled KLG-3 or isotype control (Photo courtesy of L Gajecki et al.; doi.org/10.2967/jnumed.124.268762)

Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors

Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.