We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI System Detects Key Findings in Chest X-rays of Pneumonia Patients

By MedImaging International staff writers
Posted on 16 Oct 2019
Print article
Researchers from Intermountain Healthcare (Salt Lake City, UT, USA) and Stanford University (Stanford, CA, USA) have demonstrated that it takes just 10 seconds for an automated artificial intelligence- (AI) based chest X-ray interpretation model to accurately identify key findings in chest X-rays of patients suspected of having pneumonia.

The researchers studied the CheXpert system, an automated chest X-ray interpretation model developed at Stanford University that utilizes AI to review X-ray images taken at several emergency departments. The CheXpert model was developed by the Stanford Machine Learning Group, which used 188,000 chest imaging studies to create a model that can determine what is and is not pneumonia on an X-ray.

The researchers found that the CheXpert system accurately identified key findings in X-rays - with high agreement to a consensus of three radiologists - in about 10 seconds, thus significantly outperforming current clinical practice. The study found that those ultra-quick findings could enable physicians reading X-rays to accurately confirm a pneumonia diagnosis significantly faster than current clinical practice, enabling treatment to start sooner, which is vital for severely ill patients suffering from pneumonia.

"CheXpert is going to be faster and as accurate as radiologists viewing the studies. It's an exciting new way of thinking about diagnosing and treating patients to provide the very best care possible," said Nathan C. Dean, MD, principal investigator of the study, and section chief of pulmonary and critical care medicine at Intermountain Medical Center in Salt Lake City.

Related Links:
Intermountain Healthcare
Stanford University

Ultra-Flat DR Detector
meX+1717SCC
New
Biopsy Software
Affirm® Contrast
3T MRI Scanner
MAGNETOM Cima.X
Portable X-ray Unit
AJEX140H

Print article

Channels

Radiography

view channel
Image: The new machine algorithm can identify cardiovascular risk at the click of a button (Photo courtesy of Adobe Stock)

Machine Learning Algorithm Identifies Cardiovascular Risk from Routine Bone Density Scans

A new study published in the Journal of Bone and Mineral Research reveals that an automated machine learning program can predict the risk of cardiovascular events and falls or fractures by analyzing bone... Read more

Nuclear Medicine

view channel
Image: The prostate cancer imaging study aims to reduce the need for biopsies (Photo courtesy of Shutterstock)

New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer

Prostate cancer is the second leading cause of cancer-related death among men in the United States. However, the majority of older men diagnosed with prostate cancer have slow-growing, low-risk forms of... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.