We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Algorithm Outperforms Human Experts in Identifying Cervical Precancer

By MedImaging International staff writers
Posted on 24 Jan 2019
Researchers from the National Institutes of Health (Bethesda, MA, USA) have developed a computer algorithm that can analyze digital images of a woman’s cervix and accurately identify precancerous changes that require medical attention. The artificial intelligence (AI) approach, called automated visual evaluation, could potentially revolutionize cervical cancer screening, especially in low-resource settings.

Health workers can easily perform automated visual evaluation by using a cell phone or similar camera device for cervical screening and treatment during a single visit. Additionally, the approach can be performed with minimal training, making it ideal for countries with limited health care resources, where cervical cancer is a leading cause of illness and death among women.

The researchers developed the method by using comprehensive datasets to "train" a deep, or machine, learning algorithm to recognize patterns in complex visual inputs, such as medical images. They created the algorithm by using more than 60,000 cervical images from a photo archive of the National Cancer Institute (NCI) that was collected during a cervical cancer screening study carried out in Costa Rica in the 1990s. More than 9,400 women participated in that population study, with follow up lasting for up to 18 years. The prospective nature of the study allowed the researchers to gain nearly complete information on which cervical changes became precancers and which did not. The photos were digitized and used to train a deep learning algorithm so that it could distinguish between the cervical conditions requiring treatment and those not requiring treatment.

The researchers now plan to further train the algorithm on a sample of representative images of cervical precancers and normal cervical tissue from women in communities around the world, using a variety of cameras and other imaging options with the aim of creating the best possible algorithm for common, open use.

"Our findings show that a deep learning algorithm can use images collected during routine cervical cancer screening to identify precancerous changes that, if left untreated, may develop into cancer," said Mark Schiffman, M.D, M.P.H., of NCI’s Division of Cancer Epidemiology and Genetics, and senior author of the study. "In fact, the computer analysis of the images was better at identifying precancer than a human expert reviewer of Pap tests under the microscope (cytology)."

"When this algorithm is combined with advances in HPV vaccination, emerging HPV detection technologies, and improvements in treatment, it is conceivable that cervical cancer could be brought under control, even in low-resource settings," said Maurizio Vecchione, executive vice president of Global Good, a fund at Intellectual Ventures, which collaborated with the NCI investigators for creating this approach.

Related Links:
National Institutes of Health

X-Ray Illuminator
X-Ray Viewbox Illuminators
X-ray Diagnostic System
FDX Visionary-A
Portable X-ray Unit
AJEX140H
Radiation Safety Barrier
RayShield Intensi-Barrier

Channels

Nuclear Medicine

view channel
Image: The new tracer, 64Cu-NOTA-EV-F(ab′)2​, targets nectin-4, a protein strongly linked to tumor growth in both TNBC and UBC cancer types. (Wenpeng Huang et al., DOI: 10.2967/jnumed.125.270132)

PET Tracer Enables Same-Day Imaging of Triple-Negative Breast and Urothelial Cancers

Triple-negative breast cancer (TNBC) and urothelial bladder carcinoma (UBC) are aggressive cancers often diagnosed at advanced stages, leaving limited time for effective treatment decisions.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.