Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Study Finds AI Falls Short When Analyzing Medical Data

By MedImaging International staff writers
Posted on 20 Nov 2018
A study conducted at the Icahn School of Medicine at Mount Sinai (New York, NY, USA) has found that artificial intelligence (AI) tools trained to detect pneumonia on chest X-rays suffered significant decreases in performance when tested on data from outside health systems. More...
These findings suggest that unless AI in the medical space is carefully tested for performance across a wide range of populations, the deep learning models may not perform as accurately as expected.

Amidst the growing interest in the use of computer system frameworks called convolutional neural networks (CNN) to analyze medical imaging and provide a computer-aided diagnosis, recent studies have found that AI image classification may not generalize to new data as well as commonly portrayed. The researchers at the Icahn School of Medicine at Mount Sinai assessed how AI models identified pneumonia in 158,000 chest X-rays across three medical institutions. They chose to study the diagnosis of pneumonia on chest X-rays due to its common occurrence, clinical significance, and prevalence in the research community.

The researchers found that in three out of five comparisons, the performance of CNNs in diagnosing diseases on X-rays from hospitals outside of its own network was significantly lower as compared to X-rays from the original health system. However, CNNs were able to detect the hospital system where an X-ray was acquired with a high-degree of accuracy, and cheated at their predictive task based on the prevalence of pneumonia at the training institution. The researchers found that the key problem in using deep learning models in medicine was their use of a massive number of parameters, making it challenging to identify specific variables driving predictions, such as the types of CT scanners used at a hospital and the resolution quality of imaging.

“Our findings should give pause to those considering rapid deployment of AI platforms without rigorously assessing their performance in real-world clinical settings reflective of where they are being deployed,” said senior author Eric Oermann, MD, Instructor in Neurosurgery at the Icahn School of Medicine at Mount Sinai. “Deep learning models trained to perform medical diagnosis can generalize well, but this cannot be taken for granted since patient populations and imaging techniques differ significantly across institutions.”

“If CNN systems are to be used for medical diagnosis, they must be tailored to carefully consider clinical questions, tested for a variety of real-world scenarios, and carefully assessed to determine how they impact accurate diagnosis,” said first author John Zech, a medical student at the Icahn School of Medicine at Mount Sinai.

Related Links:
Icahn School of Medicine at Mount Sinai


Medical Radiographic X-Ray Machine
TR30N HF
New
MRI System
nanoScan MRI 3T/7T
Breast Localization System
MAMMOREP LOOP
Diagnostic Ultrasound System
DC-80A
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Nuclear Medicine

view channel
Image: The diagnostic tool could improve diagnosis and treatment decisions for patients with chronic lung infections (Photo courtesy of SNMMI)

Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections

Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.