We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




ECG Imaging Algorithm Could Help Reduce Invasive Heart Procedures

By MedImaging International staff writers
Posted on 30 Oct 2018
Image: Doctors can use these noninvasive maps of electrochemical potentials inside a patient\'s heart to localize the source of an abnormal heart rhythm (Photo courtesy of Abhejit Rajagopal).
Image: Doctors can use these noninvasive maps of electrochemical potentials inside a patient\'s heart to localize the source of an abnormal heart rhythm (Photo courtesy of Abhejit Rajagopal).
A group of researchers from the University of California, Santa Barbara (Santa Barbara, CA, USA) have developed new algorithms to localize the source of an atrial fibrillation, an abnormal heart rhythm.

Doctors use invasive procedures to map the hearts of patients suffering from atrial fibrillation and decide whether an ablation procedure to remove heart tissue is likely to have a positive outcome. Computed tomography (CT) scans or ultrasounds are useful in determining the structure of a patient’s heart, although invasive electrical procedures are used to identify and localize the source of the atrial fibrillation.

The new algorithms are based on the concept that the inverse operator, a function that maps body-surface electrocardiogram signals to endocardial potentials, can be non-linear and optimized using a set of historical data. This allows them to learn a model for predicting cardiac potentials from electrocardiograms that are realistic, accurate, and amenable to general-purpose use as a new cardiac imaging tool. This is significant because it suggests that much higher resolution reconstruction is possible if non-linear reconstruction algorithms are used, as compared to what is theoretically known using linear methods and partial data.

“Imagine a world where instead of a doctor listening to your heart through a stethoscope they can see a live video of your heart beating via ultrasound with corresponding electrical measurements of the local potentials on or around the cardiac tissue,” said UC Santa Barbara graduate student Abhejit Rajagopal, author of the paper published in the journal APL Bioengineering, from AIP Publishing. “The goal is for doctors to be able to treat patients with cardiac issues without needing to use invasive surgeries just to determine the cause.”

Related Links:
University of California, Santa Barbara

X-ray Diagnostic System
FDX Visionary-A
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
40/80-Slice CT System
uCT 528
Medical Radiographic X-Ray Machine
TR30N HF

Channels

Ultrasound

view channel
Image: The new implantable device for chronic pain management is small and flexible (Photo courtesy of The Zhou Lab at USC)

Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery

Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more

Nuclear Medicine

view channel
Image: The diagnostic tool could improve diagnosis and treatment decisions for patients with chronic lung infections (Photo courtesy of SNMMI)

Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections

Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.