Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI-Based Approach Reduces False Positives in Mammography

By MedImaging International staff writers
Posted on 18 Oct 2018
A team of researchers from the University of Pittsburgh (Pittsburgh, PA, USA) have developed an artificial intelligence (AI) approach based on deep learning convolutional neural network (CNN) that could identify nuanced mammographic imaging features specific for recalled but benign (false-positive) mammograms and distinguish such mammograms from those identified as malignant or negative.

The researchers conducted a study to find out whether deep learning could be applied to analyze a large set of mammograms in order to distinguish images from women with a malignant diagnosis, images from women who were recalled and were later determined to have benign lesions (false recalls), and images from women determined to be breast cancer-free at the time of screening.

The researchers used a total of 14,860 images of 3,715 patients from two independent mammography datasets, Full-Field Digital Mammography Dataset (FFDM - 1,303 patients) and Digital Dataset of Screening Mammography (DDSM - 2,412 patients). More...
They built CNN models and used enhanced model training approaches to investigate six classification scenarios that would help distinguish images of benign, malignant, and recalled-benign mammograms. Upon combining the datasets from FFDM and DDSM, the area under the curve (AUC) to distinguish benign, malignant, and recalled-benign images ranged from 0.76 to 0.91. The higher the AUC, the better the performance, with a maximum of 1, according to Shandong Wu, PhD, assistant professor of radiology, biomedical informatics, bioengineering, intelligent systems, and clinical and translational science, and director of the Intelligent Computing for Clinical Imaging lab in the Department of Radiology at the University of Pittsburgh, Pennsylvania.

"We showed that there are imaging features unique to recalled-benign images that deep learning can identify and potentially help radiologists in making better decisions on whether a patient should be recalled or is more likely a false recall," said Wu. "Based on the consistent ability of our algorithm to discriminate all categories of mammography images, our findings indicate that there are indeed some distinguishing features/characteristics unique to images that are unnecessarily recalled. Our AI models can augment radiologists in reading these images and ultimately benefit patients by helping reduce unnecessary recalls."

Related Links:
University of Pittsburgh


Ultrasonic Pocket Doppler
SD1
Digital X-Ray Detector Panel
Acuity G4
New
Adjustable Mobile Barrier
M-458
New
Mobile X-Ray System
K4W
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Nuclear Medicine

view channel
Image: The diagnostic tool could improve diagnosis and treatment decisions for patients with chronic lung infections (Photo courtesy of SNMMI)

Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections

Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.