We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI-Based Approach Reduces False Positives in Mammography

By MedImaging International staff writers
Posted on 18 Oct 2018
Print article
A team of researchers from the University of Pittsburgh (Pittsburgh, PA, USA) have developed an artificial intelligence (AI) approach based on deep learning convolutional neural network (CNN) that could identify nuanced mammographic imaging features specific for recalled but benign (false-positive) mammograms and distinguish such mammograms from those identified as malignant or negative.

The researchers conducted a study to find out whether deep learning could be applied to analyze a large set of mammograms in order to distinguish images from women with a malignant diagnosis, images from women who were recalled and were later determined to have benign lesions (false recalls), and images from women determined to be breast cancer-free at the time of screening.

The researchers used a total of 14,860 images of 3,715 patients from two independent mammography datasets, Full-Field Digital Mammography Dataset (FFDM - 1,303 patients) and Digital Dataset of Screening Mammography (DDSM - 2,412 patients). They built CNN models and used enhanced model training approaches to investigate six classification scenarios that would help distinguish images of benign, malignant, and recalled-benign mammograms. Upon combining the datasets from FFDM and DDSM, the area under the curve (AUC) to distinguish benign, malignant, and recalled-benign images ranged from 0.76 to 0.91. The higher the AUC, the better the performance, with a maximum of 1, according to Shandong Wu, PhD, assistant professor of radiology, biomedical informatics, bioengineering, intelligent systems, and clinical and translational science, and director of the Intelligent Computing for Clinical Imaging lab in the Department of Radiology at the University of Pittsburgh, Pennsylvania.

"We showed that there are imaging features unique to recalled-benign images that deep learning can identify and potentially help radiologists in making better decisions on whether a patient should be recalled or is more likely a false recall," said Wu. "Based on the consistent ability of our algorithm to discriminate all categories of mammography images, our findings indicate that there are indeed some distinguishing features/characteristics unique to images that are unnecessarily recalled. Our AI models can augment radiologists in reading these images and ultimately benefit patients by helping reduce unnecessary recalls."

Related Links:
University of Pittsburgh

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Pre-Op Planning Solution
Sectra 3D Trauma
Computed Tomography (CT) Scanner
Aquilion Serve SP
New
Digital Radiography Generator
meX+20BT lite

Print article
Radcal

Channels

MRI

view channel
Image: PET/MRI can accurately classify prostate cancer patients (Photo courtesy of 123RF)

PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients

The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.