We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI-Based Approach Reduces False Positives in Mammography

By MedImaging International staff writers
Posted on 18 Oct 2018
Print article
A team of researchers from the University of Pittsburgh (Pittsburgh, PA, USA) have developed an artificial intelligence (AI) approach based on deep learning convolutional neural network (CNN) that could identify nuanced mammographic imaging features specific for recalled but benign (false-positive) mammograms and distinguish such mammograms from those identified as malignant or negative.

The researchers conducted a study to find out whether deep learning could be applied to analyze a large set of mammograms in order to distinguish images from women with a malignant diagnosis, images from women who were recalled and were later determined to have benign lesions (false recalls), and images from women determined to be breast cancer-free at the time of screening.

The researchers used a total of 14,860 images of 3,715 patients from two independent mammography datasets, Full-Field Digital Mammography Dataset (FFDM - 1,303 patients) and Digital Dataset of Screening Mammography (DDSM - 2,412 patients). They built CNN models and used enhanced model training approaches to investigate six classification scenarios that would help distinguish images of benign, malignant, and recalled-benign mammograms. Upon combining the datasets from FFDM and DDSM, the area under the curve (AUC) to distinguish benign, malignant, and recalled-benign images ranged from 0.76 to 0.91. The higher the AUC, the better the performance, with a maximum of 1, according to Shandong Wu, PhD, assistant professor of radiology, biomedical informatics, bioengineering, intelligent systems, and clinical and translational science, and director of the Intelligent Computing for Clinical Imaging lab in the Department of Radiology at the University of Pittsburgh, Pennsylvania.

"We showed that there are imaging features unique to recalled-benign images that deep learning can identify and potentially help radiologists in making better decisions on whether a patient should be recalled or is more likely a false recall," said Wu. "Based on the consistent ability of our algorithm to discriminate all categories of mammography images, our findings indicate that there are indeed some distinguishing features/characteristics unique to images that are unnecessarily recalled. Our AI models can augment radiologists in reading these images and ultimately benefit patients by helping reduce unnecessary recalls."

Related Links:
University of Pittsburgh

Wall Fixtures
MRI SERIES
Ultrasonic Pocket Doppler
SD1
Multi-Use Ultrasound Table
Clinton
40/80-Slice CT System
uCT 528

Print article

Channels

MRI

view channel
Image: An AI tool has shown tremendous promise for predicting relapse of pediatric brain cancer (Photo courtesy of 123RF)

AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans

Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more

Nuclear Medicine

view channel
Image: In vivo imaging of U-87 MG xenograft model with varying mass doses of 89Zr-labeled KLG-3 or isotype control (Photo courtesy of L Gajecki et al.; doi.org/10.2967/jnumed.124.268762)

Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors

Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.