We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Algorithm Uses Key Signatures to Predict Onset of AD

By MedImaging International staff writers
Posted on 15 Oct 2018
Print article
A team of researchers has designed an artificial intelligence (AI) algorithm that learns signatures from magnetic resonance imaging (MRI), genetics, and clinical data to accurately predict cognitive decline leading to Alzheimer’s disease. The algorithm can help predict whether an individual’s cognitive faculties are likely to deteriorate towards Alzheimer’s in the next five years.

The researchers trained the algorithm by using data of more than 800 people ranging from normal healthy seniors to those experiencing mild cognitive impairment, and Alzheimer’s disease patients. They replicated their results within the study on an independently collected sample from the Australian Imaging and Biomarkers Lifestyle Study of Ageing. Using more data, the scientists will now be able to better identify those in the population at greatest risk for cognitive decline leading to Alzheimer’s.

“At the moment, there are limited ways to treat Alzheimer’s and the best evidence we have is for prevention. Our AI methodology could have significant implications as a ‘doctor’s assistant’ that would help stream people onto the right pathway for treatment. For example, one could even initiate lifestyle changes that may delay the beginning stages of Alzheimer’s or even prevent it altogether,” said Dr. Mallar Chakravarty, a computational neuroscientist at the Douglas Mental Health University Institute and Assistant Professor in McGill University’s Department of Psychiatry. “We are currently working on testing the accuracy of predictions using new data. It will help us to refine predictions and determine if we can predict even farther into the future.”

Silver Member
X-Ray QA Meter
T3 AD Pro
New
Digital Intelligent Ferromagnetic Detector
Digital Ferromagnetic Detector
New
Mobile X-Ray Machine
MARS 15 / 30
New
MRI Infusion Workstation
BeneFusion MRI Station

Print article

Channels

MRI

view channel
Image: An AI tool has shown tremendous promise for predicting relapse of pediatric brain cancer (Photo courtesy of 123RF)

AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans

Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more

Nuclear Medicine

view channel
Image: In vivo imaging of U-87 MG xenograft model with varying mass doses of 89Zr-labeled KLG-3 or isotype control (Photo courtesy of L Gajecki et al.; doi.org/10.2967/jnumed.124.268762)

Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors

Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.