We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI and fMRI Show How Brain Connects Memories to Solve Problems

By MedImaging International staff writers
Posted on 02 Oct 2018
Print article
A team of German neuroscientists and Artificial Intelligence (AI) researchers have published results from their study that provided insights into the way the human brain connects individual episodic memories, or memories of specific events, to solve problems.

While humans are known to have the ability to creatively combine their memories to solve problems, it still remains unclear how people use their episodic memories to arrive at novel insights. According to the team of researchers, a novel brain mechanism allows the retrieved memories to trigger the retrieval of further related memories, thus allowing for the retrieval of multiple linked memories, which enable the brain to create insights.

They have suggested that the individual memories are stored as separate memory traces in a region of the brain called the hippocampus. Their new theory explores a neglected anatomical connection that loops out of the hippocampus to the neighboring entorhinal cortex, but then immediately passes back in. The researchers believe that it is this recurrent connection that allows memories to be retrieved from the hippocampus to trigger the retrieval of further related memories. The researchers tested this theory by taking high-resolution 7-Tesla functional MRI scans from 26 young men and women as they were performing a task requiring them to draw insights across separate events. The researchers showed the volunteers pairs of photographs: one of a face and one of an object or a place. Each individual object and place appeared in two separate photo pairs, each of which included a different face. This meant that every photo pair was linked with another pair through the shared object or place image.

In the second phase of the study, the participants were tested whether they could infer the indirect connection between these linked pairs of photos by showing one face and asking the participants to choose between two other faces. One of the choices—the correct one—was paired with the same object or place image, and one was not. The researchers expected the presented face to trigger the retrieval of the paired object or place and thus, spark brain activity that would pass out of the hippocampus into the entorhinal cortex. The researchers also expected evidence of this activity passing back into the hippocampus to trigger the retrieval of the correct linked face. The researchers trained a computer algorithm to distinguish between activation for scenes and objects within these input and output regions. The algorithm was then applied when only faces were displayed on the screen. If the algorithm indicated the presence of scene or object information on these trials, it could only be driven by retrieved memories of the linked scene or object photos.

"Our data showed that when the hippocampus retrieves a memory, it doesn't just pass it to the rest of the brain," said Dharshan Kumaran, a researcher who was part of the study. "Instead, it recirculates the activation back into the hippocampus, triggering the retrieval of other related memories."

The researchers believe that their results could help AI learn faster in the future. "While there are many domains where AI is superior, humans still have an advantage when tasks depend on the flexible use of episodic memory," said Martin Chadwick, another researcher who was part of the study. "If we can understand the mechanisms that allow people to do this, the hope is that we can replicate them within our AI systems, providing them with a much greater capacity for rapidly solving novel problems."

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Digital Radiography Acquisition Software
VXvue with PureImpact
New
DR Flat Panel Detector
1500L
New
Color Doppler Ultrasound System
KC20

Print article

Channels

Radiography

view channel
:	Image: The AI model could be a valuable adjunct to human radiologists in breast cancer diagnoses and risk prediction (Photo courtesy of 123RF)

AI Model Predicts 5-Year Breast Cancer Risk from Mammograms

Approximately 13% of U.S. women, or one in every eight, are predicted to develop invasive breast cancer over their lifetime, with 1 in 39 women (3%) succumbing to the illness, according to the American... Read more

Nuclear Medicine

view channel
Image: The AI system uses scintigraphy imaging for early diagnosis of cardiac amyloidosis (Photo courtesy of 123RF)

AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging

Cardiac amyloidosis, a condition characterized by the buildup of abnormal protein deposits (amyloids) in the heart muscle, severely affects heart function and can lead to heart failure or death without... Read more

General/Advanced Imaging

view channel
Image: The Cinematic Reality app enables interaction with realistic renderings of human anatomy (Photo courtesy of Siemens)

AR Application Turns Medical Scans Into Holograms for Assistance in Surgical Planning

Siemens Healthineers (Erlangen, Germany) has launched an app designed for Apple Vision Pro that allows users including surgeons, medical students, or patients to view immersive, interactive holograms of... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.