We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI System Accurately Detects Lung Cancer in CT Scans

By MedImaging International staff writers
Posted on 05 Sep 2018
Print article
Image: Assistant Professor Ulas Bagci leads the group of engineers at the University of Central Florida that have taught a computer how to detect tiny specks of lung cancer in CT scans, which radiologists often have a difficult time identifying. The artificial intelligence system is about 95 percent accurate, compared to 65 percent when done by human eyes, the team said (Photo courtesy of the University of Central Florida, Karen Norum).
Image: Assistant Professor Ulas Bagci leads the group of engineers at the University of Central Florida that have taught a computer how to detect tiny specks of lung cancer in CT scans, which radiologists often have a difficult time identifying. The artificial intelligence system is about 95 percent accurate, compared to 65 percent when done by human eyes, the team said (Photo courtesy of the University of Central Florida, Karen Norum).
Engineers from the University of Central Florida's Computer Vision Research Center (Orlando, FL, USA) have developed an artificial intelligence (AI) system which can detect tiny specks of lung cancer in CT scans. Radiologists find it difficult to identify such tiny tumors and have an accuracy of 65%, while the AI system has an accuracy of about 95%, according to the engineers.

In order to teach the computer to look for the tumors, the scientists fed more than 1,000 CT scans into the software and used the same kind of algorithms, which are utilized by facial-recognition software to scan thousands of faces in search of a particular pattern and find a match. The computer was taught to ignore other tissue, nerves and other masses found in the CT scans and analyze lung tissues.

"We used the brain as a model to create our system," said Rodney LaLonde, a doctoral candidate. "You know how connections between neurons in the brain strengthen during development and learn? We used that blueprint, if you will, to help our system understand how to look for patterns in the CT scans and teach itself how to find these tiny tumors."

The researchers are now fine-tuning the AI's ability to identify cancerous versus benign tumors and also study if they can develop another AI system to help identify or predict brain disorders.

"I believe this will have a very big impact," said engineering assistant professor Ulas Bagci who led the group of researchers at the center, which focuses on AI with potential medical applications. "Lung cancer is the number one cancer killer in the United States and if detected in late stages, the survival rate is only 17%. By finding ways to help identify earlier, I think we can help increase survival rates."

Related Links:
University of Central Florida Computer Vision Research Center

New
Breast Localization System
MAMMOREP LOOP
Digital X-Ray Detector Panel
Acuity G4
X-ray Diagnostic System
FDX Visionary-A
New
Mammography System (Analog)
MAM VENUS

Print article

Channels

Radiography

view channel
Image: The new machine algorithm can identify cardiovascular risk at the click of a button (Photo courtesy of Adobe Stock)

Machine Learning Algorithm Identifies Cardiovascular Risk from Routine Bone Density Scans

A new study published in the Journal of Bone and Mineral Research reveals that an automated machine learning program can predict the risk of cardiovascular events and falls or fractures by analyzing bone... Read more

Nuclear Medicine

view channel
Image: The prostate cancer imaging study aims to reduce the need for biopsies (Photo courtesy of Shutterstock)

New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer

Prostate cancer is the second leading cause of cancer-related death among men in the United States. However, the majority of older men diagnosed with prostate cancer have slow-growing, low-risk forms of... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.