Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI-Based Approach to Image Reconstruction Provides Faster and Clearer MRI Scans

By MedImaging International staff writers
Posted on 28 Aug 2018
Researchers from the Massachusetts General Hospital (MGH) Martinos Center for Biomedical Imaging (Charlestown, MA, USA) and Harvard University (Cambridge, MA, USA) have used artificial intelligence to develop a new type of medical imaging technology called AUTOMAP, which produces higher-quality images from less information. More...
This cuts down the amount of radiation from CT and PET scans, thus reducing the duration of an MRI scan. The research was funded by the National Institute for Biomedical Imaging and Bioengineering (NIBIB).

AUTOMAP uses machine learning and software, referred to as neural networks — inspired by the brain’s ability to process information and perceive or make choices. It churns through—and learns from—data from existing images and applies mathematical approaches in reconstructing new ones. AUTOMAP finds the best computational strategies to produce clear, accurate images for various types of medical scans.

For their study, the researchers used a set of 50,000 MRI brain scans from the NIH-supported Human Connectome Project to train the AUTOMAP system to reconstruct images and successfully demonstrated improvements in reducing noise and reconstruction artifacts as compared to the existing methods. The researchers found that the AUTOMAP system could produce brain MRI images with better signal and less noise than conventional MRI techniques.

“The signal-to-noise ratio improvements we gain from this artificial intelligence-based method directly accelerates image acquisition on low-field MRI,” said lead author Bo Zhu, Ph.D., postdoctoral research fellow in radiology at Harvard Medical School and in physics at the MGH Martinos Center.

“This technology could become a game changer, as mainstream approaches to improving the signal-to-noise ratio rely heavily on expensive MRI hardware or on prolonged scan times,” said Shumin Wang, Ph.D., director of the NIBIB program in Magnetic Resonance Imaging. “It may also be advantageous for other significant MRI applications that have been plagued by low signal-to-noise ratio for decades, such as multi-nuclear spectroscopy.”

Related Links:
Massachusetts General Hospital Martinos Center for Biomedical Imaging
Harvard University


Half Apron
Demi
40/80-Slice CT System
uCT 528
New
Digital Color Doppler Ultrasound System
MS22Plus
Biopsy Software
Affirm® Contrast
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Nuclear Medicine

view channel
Image: The diagnostic tool could improve diagnosis and treatment decisions for patients with chronic lung infections (Photo courtesy of SNMMI)

Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections

Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more

General/Advanced Imaging

view channel
Image: Patch-based deep-learning model with limited training dataset for liver tumor segmentation in contrast-enhanced hepatic CT (Yang et al. (2025), IEEE Access, 10.1109/ACCESS.2025.3570728)

Groundbreaking AI Model Accurately Segments Liver Tumors from CT Scans

Liver cancer is the sixth most common cancer worldwide and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is critical for diagnosis and therapy, but manual methods by radiologists... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.