We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI-Based Approach to Image Reconstruction Provides Faster and Clearer MRI Scans

By MedImaging International staff writers
Posted on 28 Aug 2018
Print article
Image: MR images reconstructed from the same data with conventional approaches, at left, and AUTOMAP, at right (Photo courtesy of Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital).
Image: MR images reconstructed from the same data with conventional approaches, at left, and AUTOMAP, at right (Photo courtesy of Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital).
Researchers from the Massachusetts General Hospital (MGH) Martinos Center for Biomedical Imaging (Charlestown, MA, USA) and Harvard University (Cambridge, MA, USA) have used artificial intelligence to develop a new type of medical imaging technology called AUTOMAP, which produces higher-quality images from less information. This cuts down the amount of radiation from CT and PET scans, thus reducing the duration of an MRI scan. The research was funded by the National Institute for Biomedical Imaging and Bioengineering (NIBIB).

AUTOMAP uses machine learning and software, referred to as neural networks — inspired by the brain’s ability to process information and perceive or make choices. It churns through—and learns from—data from existing images and applies mathematical approaches in reconstructing new ones. AUTOMAP finds the best computational strategies to produce clear, accurate images for various types of medical scans.

For their study, the researchers used a set of 50,000 MRI brain scans from the NIH-supported Human Connectome Project to train the AUTOMAP system to reconstruct images and successfully demonstrated improvements in reducing noise and reconstruction artifacts as compared to the existing methods. The researchers found that the AUTOMAP system could produce brain MRI images with better signal and less noise than conventional MRI techniques.

“The signal-to-noise ratio improvements we gain from this artificial intelligence-based method directly accelerates image acquisition on low-field MRI,” said lead author Bo Zhu, Ph.D., postdoctoral research fellow in radiology at Harvard Medical School and in physics at the MGH Martinos Center.

“This technology could become a game changer, as mainstream approaches to improving the signal-to-noise ratio rely heavily on expensive MRI hardware or on prolonged scan times,” said Shumin Wang, Ph.D., director of the NIBIB program in Magnetic Resonance Imaging. “It may also be advantageous for other significant MRI applications that have been plagued by low signal-to-noise ratio for decades, such as multi-nuclear spectroscopy.”

Related Links:
Massachusetts General Hospital Martinos Center for Biomedical Imaging
Harvard University

Radiology Software
DxWorks
3T MRI Scanner
MAGNETOM Cima.X
Portable Color Doppler Ultrasound System
S5000
40/80-Slice CT System
uCT 528

Print article

Channels

Radiography

view channel
Image: The new machine algorithm can identify cardiovascular risk at the click of a button (Photo courtesy of Adobe Stock)

Machine Learning Algorithm Identifies Cardiovascular Risk from Routine Bone Density Scans

A new study published in the Journal of Bone and Mineral Research reveals that an automated machine learning program can predict the risk of cardiovascular events and falls or fractures by analyzing bone... Read more

Nuclear Medicine

view channel
Image: The prostate cancer imaging study aims to reduce the need for biopsies (Photo courtesy of Shutterstock)

New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer

Prostate cancer is the second leading cause of cancer-related death among men in the United States. However, the majority of older men diagnosed with prostate cancer have slow-growing, low-risk forms of... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.