Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Philips Healthcare

Operates in Diagnostic Imaging Systems, Patient Care and Clinical Informatics, Customer Services, and Home Healthcare... read more Featured Products: More products

Download Mobile App




Intel and Philips Partner to Speed Up Imaging Analysis Using AI

By MedImaging International staff writers
Posted on 22 Aug 2018
Intel Corporation (Santa Clara, CA, USA) and Royal Philips (Amsterdam, Netherlands) have tested two healthcare use cases for deep learning inference models: one on X-rays of bones for bone-age-prediction modeling and the other on CT scans of lungs for lung segmentation. More...
In these tests, which were conducted using Intel Xeon Scalable processors and the OpenVINO toolkit, the researchers achieved a speed improvement of 188 times for the bone-age-prediction model and 38 times for the lung-segmentation model over the baseline measurements. These tests show that healthcare organizations can implement artificial intelligence (AI) workloads without expensive hardware investments.

The size of medical image files is growing along with the improvement in medical image resolution, with most images having a size of 1GB or greater. More healthcare organizations are using deep learning inference to more quickly and accurately review patient images. AI techniques such as object detection and segmentation can help radiologists identify issues faster and more accurately, which can translate to better prioritization of cases, better outcomes for more patients and reduced costs for hospitals. Deep learning inference applications typically process workloads in small batches or in a streaming manner, which means they do not exhibit large batch sizes. Until recently, graphics processing unit (GPUs) was the prominent hardware solution to accelerate deep learning. By design, GPUs work well with images, but also have inherent memory constraints that data scientists have had to work around when building some models.

Central processing units (CPUs), such as Intel Xeon Scalable processors, do not have such memory constraints and can accelerate complex, hybrid workloads, including larger, memory-intensive models typically found in medical imaging. For a large subset of AI workloads, CPUs can better meet the needs of data scientists as compared to GPU-based systems. Running healthcare deep learning workloads on CPU-based devices offers direct benefits to companies such as Philips as it allows them to offer AI-based services that do not drive up costs for their end customers.

“Intel Xeon Scalable processors appear to be the right solution for this type of AI workload. Our customers can use their existing hardware to its maximum potential, while still aiming to achieve quality output resolution at exceptional speeds,” said Vijayananda J., chief architect and fellow, Data Science and AI at Philips HealthSuite Insights.


Half Apron
Demi
Mobile X-Ray System
K4W
Breast Localization System
MAMMOREP LOOP
Medical Radiographic X-Ray Machine
TR30N HF
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Nuclear Medicine

view channel
Image: A bone cancer cell showing supportive fibers (in red), genetic material (in blue), and the specific target protein LRRC15 (in green) (Photo courtesy of Ulmert Laboratory)

Radiotheranostic Approach Detects, Kills and Reprograms Aggressive Cancers

Aggressive cancers such as osteosarcoma and glioblastoma often resist standard therapies, thrive in hostile tumor environments, and recur despite surgery, radiation, or chemotherapy. These tumors also... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.