We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Researchers Develop AI Model to Make Cancer Treatment Less Toxic

By MedImaging International staff writers
Posted on 20 Aug 2018
Image: Researchers aim to improve the quality of life for patients suffering from glioblastoma with a machine-learning model that makes chemotherapy and radiotherapy dosing regimens less toxic but still as effective as human-designed regimens (Photo courtesy of MIT).
Image: Researchers aim to improve the quality of life for patients suffering from glioblastoma with a machine-learning model that makes chemotherapy and radiotherapy dosing regimens less toxic but still as effective as human-designed regimens (Photo courtesy of MIT).
Researchers from the Massachusetts Institute of Technology (Cambridge, MA, USA) have developed an artificial intelligence model that “learns” from patient data to make cancer-dosing regimens less toxic but still effective.

In a paper presented at the 2018 Machine Learning for Healthcare conference at Stanford University, MIT Media Lab researchers have detailed a novel machine-learning technique to improve the quality of life for patients by reducing toxic chemotherapy and radiotherapy dosing for glioblastoma, the most aggressive form of brain cancer. The “self-learning” machine-learning technique looks at the current treatment regimens in use and iteratively adjusts the doses, eventually finding an optimal treatment plan, with the lowest possible potency and frequency of doses that should still reduce tumor sizes to a degree comparable to that of traditional regimens.

In simulated trials of 50 patients, the machine-learning model designed treatment cycles that reduced the potency to a quarter or half of nearly all the doses while maintaining the same tumor-shrinking potential. It skipped doses altogether several times and scheduled administrations only twice a year instead of monthly.

The model is a major improvement over the conventional “eye-balling” method of administering doses, observing how patients respond, and adjusting accordingly, according to Nicholas J. Schork, a professor and director of human biology at the J. Craig Venter Institute, and an expert in clinical trial design. “[Humans don’t] have the in-depth perception that a machine looking at tons of data has, so the human process is slow, tedious, and inexact,” he said. “Here, you’re just letting a computer look for patterns in the data, which would take forever for a human to sift through, and use those patterns to find optimal doses.”

According to Schork, the work could be of particular interest to the US FDA, which is currently looking for ways to leverage data and artificial intelligence to develop health technologies. Regulations still need be established, he said, “but I don’t doubt, in a short amount of time, the FDA will figure out how to vet these [technologies] appropriately, so they can be used in everyday clinical programs.”

Related Links:
Massachusetts Institute of Technology

Digital Color Doppler Ultrasound System
MS22Plus
Half Apron
Demi
Mammo DR Retrofit Solution
DR Retrofit Mammography
40/80-Slice CT System
uCT 528

Channels

Nuclear Medicine

view channel
Image: The new tracer, 64Cu-NOTA-EV-F(ab′)2​, targets nectin-4, a protein strongly linked to tumor growth in both TNBC and UBC cancer types. (Wenpeng Huang et al., DOI: 10.2967/jnumed.125.270132)

PET Tracer Enables Same-Day Imaging of Triple-Negative Breast and Urothelial Cancers

Triple-negative breast cancer (TNBC) and urothelial bladder carcinoma (UBC) are aggressive cancers often diagnosed at advanced stages, leaving limited time for effective treatment decisions.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.