We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New AI Algorithm Makes Liver Cancer Surgery Safer

By MedImaging International staff writers
Posted on 07 Jun 2018
Print article
Image: New algorithms analyze patients’ imaging data and calculate surgical risks, making liver cancer surgery safer (Photo courtesy of the Fraunhofer Institute for Medical Image Computing MEVIS).
Image: New algorithms analyze patients’ imaging data and calculate surgical risks, making liver cancer surgery safer (Photo courtesy of the Fraunhofer Institute for Medical Image Computing MEVIS).
Researchers at the Fraunhofer Institute for Medical Image Computing MEVIS (Bremen, Germany) have developed algorithms that analyze patients’ imaging data and calculate surgical risks, making liver cancer surgery safer and easier to plan. Researchers at Fraunhofer have been working on image-processing algorithms for use in medicine since 1998. The method is now widely known among physicians as MEVIS analysis and has become established in practice.

Surgery continues to offer the best chance of recovery among patients with liver cancer or those with liver metastases caused by other cancers. However, the complex, entangled human vascular anatomy makes it difficult to reconstruct mentally based on CT or MRI images alone. The new software analyzes a patient’s radiological images, and generates a detailed three-dimensional model of the liver and its vascular systems. It calculates the supply and drainage areas of the blood vessels and helps to determine the risks of possible tumors resection strategies. The information can be used by surgeons to prepare their surgery accurately by planning the optimal resection virtually. The analysis of vascular anatomy in the vicinity of the tumor also helps locate critical sections of the planned procedure. The surgeon receives a risk map of the resection path and knows where there is little room for deviations from the optimal cutting plane, such as where the planned resection corridor is particularly narrow.

The researchers have also developed an iPad app that combines the planning data with augmented reality. When the doctor turns on the iPad camera and directs it at the patient’s liver, the three-dimensional image of the patient’s liver, previously generated using the algorithms, is superimposed onto the image of the camera and shows the position of the blood vessels and tumors beneath the liver surface.

According to studies, liver surgery is more efficient and safer with the MEVIS analysis. Additionally blood loss can also be reduced. In some cases, the analysis algorithms allow surgeons to safely perform even delicate operations, which would have been considered too risky without the software. The software also generates suggestions for performing resections. "However, these are only proposals. Ultimately, the decision has to be made by the surgeon," said Dr. Andrea Schenk, Head of Liver Research at the Fraunhofer MEVIS.

Related Links:
Fraunhofer Institute for Medical Image Computing MEVIS

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Ultrasound Software
UltraExtend NX
New
DR Flat Panel Detector
1500L
New
Portable Radiology System
DRAGON ELITE & CLASSIC

Print article

Channels

Ultrasound

view channel
Image: Structure of the proposed transparent ultrasound transducer and its optical transmittance (Photo courtesy of POSTECH)

Ultrasensitive Broadband Transparent Ultrasound Transducer Enhances Medical Diagnosis

The ultrasound-photoacoustic dual-modal imaging system combines molecular imaging contrast with ultrasound imaging. It can display molecular and structural details inside the body in real time without... Read more

Nuclear Medicine

view channel
Image: PET/CT of a 60-year-old male patient with clinical suspicion of lung cancer (Photo courtesy of EJNMMI Physics)

Early 30-Minute Dynamic FDG-PET Acquisition Could Halve Lung Scan Times

F-18 FDG-PET scans are a way to look inside the body using a special dye, and these scans can be either static or dynamic. Static scans happen 60 minutes after the dye is administered into the body, showing... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.