We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New AI Technique Dramatically Improves Quality of Medical Imaging

By MedImaging International staff writers
Posted on 05 Apr 2018
Print article
Image: A new artificial-intelligence-based approach to image reconstruction – called AUTOMAP – yields higher quality images from less data, reducing radiation doses for CT and PET and shortening scan times for MRI. Shown here are MR images reconstructed from the same data with conventional approaches (left) and AUTOMAP (right) (Photo courtesy of Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital).
Image: A new artificial-intelligence-based approach to image reconstruction – called AUTOMAP – yields higher quality images from less data, reducing radiation doses for CT and PET and shortening scan times for MRI. Shown here are MR images reconstructed from the same data with conventional approaches (left) and AUTOMAP (right) (Photo courtesy of Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital).
Researchers have developed a new technique based on artificial intelligence (AI) and machine learning that enables radiologists to acquire higher quality images without having to collect additional data at the cost of increased radiation dose for computed tomography (CT) and positron emission tomography (PET) or uncomfortably long scan times for magnetic resonance imaging (MRI).

The technique named AUTOMAP (automated transform by manifold approximation) marks a significant step forward for biomedical imaging. Researchers from the Athinoula A. Martinos Center for Biomedical Imaging at Massachusetts General Hospital (MGH) developed the technique by taking advantage of the various strides made in recent years in the neural network models used for AI and in the graphical processing units (GPUs) that drive the operations. This is because image reconstruction, particularly in the context of AUTOMAP, requires an immense amount of computation, particularly during the training of the algorithms. The availability of large datasets ("big data") required to train large neural network models such as AUTOMAP was another important factor that helped researchers to develop this technique.

In addition to producing high-quality images in less time with MRI or with lower doses with X-ray, CT and PET, AUTOMAP offers several potential benefits for clinical care. For instance, its processing speed can help the technique aid in real-time decision making about imaging protocols while the patient is in the scanner. The technique can also help in advancing other AI and machine learning applications. Since most of the current excitement surrounding machine learning in clinical imaging is focused on computer-aided diagnostics, AUTOMAP could play a role in advancing them for future clinical use as these systems rely on high-quality images for accurate diagnostic evaluations.

"With AUTOMAP, we've taught imaging systems to 'see' the way humans learn to see after birth, not through directly programming the brain but by promoting neural connections to adapt organically through repeated training on real-world examples," said Bo Zhu, PhD, a research fellow in the MGH Martinos Center and first author of the paper published in the journal Nature. "This approach allows our imaging systems to automatically find the best computational strategies to produce clear, accurate images in a wide variety of imaging scenarios."

"Our AI approach is showing remarkable improvements in accuracy and noise reduction and thus can advance a wide range of applications," said senior author Matt Rosen, PhD, director of the Low-field MRI and Hyperpolarized Media Laboratory and co-director of the Center for Machine Learning at the MGH Martinos Center. "We're incredibly excited to have the opportunity to roll this out into the clinical space where AUTOMAP can work together with inexpensive GPU-accelerated computers to improve clinical imaging and outcomes."

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Portable Radiology System
DRAGON ELITE & CLASSIC
New
Ultrasound System
Acclarix AX9
New
Brachytherapy Planning System
Oncentra Brachy

Print article
Radcal

Channels

MRI

view channel
Image: The emerging role of MRI alongside PSA testing is redefining prostate cancer diagnostics (Photo courtesy of 123RF)

Combining MRI with PSA Testing Improves Clinical Outcomes for Prostate Cancer Patients

Prostate cancer is a leading health concern globally, consistently being one of the most common types of cancer among men and a major cause of cancer-related deaths. In the United States, it is the most... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.